Q319P TI-¢9/2 Book 4 BASIC Reference (Quide (FINRL. DRAFT)

Cover Copy: A comeprehensive guide to every command,
statement, and function in TI-99/2 BASIC.

Basic Computer 99/2
Book 4: BASIC Reference Guide

Copyright ¢ 1983 Texas Instrumentz Incorporated

'ﬁ. BASIC Reference Section

1.. Introduction 0 g 66

2. Commands

3. General Program S’t’.&t1'..~1wmen'l:-.a""'“r

4. Input/Output Statements 5 -3|
5. Built—-in Numeric Functiung - (9
4. Built-in String Functions — P ‘}
7. Array Statements

8. Subroutine Statements

?. File Processing Statements

. 10. Built-in Subpragrans

B. Rppendices

C. Glossary

D. Index

Page 1

0319P TI-99/2 Book 4 BASIC Reference Guide

Boaok 4: BRASIC Reference Guide

8. BASIC Reference Sectian
1. Introduction
¢. Commands
NEW
BYE
LIST
RUN
EDIT
NUMBER
RESERUENCE
oLD
SAVE
DELETE
BREAK
LINBREAK
CONTINUE
TRACE
UNTRACE

3. General Program Statements

LET
REM
END
GOTO
ON GOTO -
1IF THEN ELSE
FOR 10 STEP
NEXT
4. Input/Output Statements
INPUT
READ
DATA
RESTORE
DISPLAY
PRINT
S. Built-in Numeric Functions
ABS -
ATN
cas
EXP
INT
LOG
RANDOMIZE
RND
SGN
SIN
SAR
- TAN

Page ¢

(FINAL DRRAFT)

0319P TI-99/F Book 4 BASIC Reference Giuide (FINAL DRAFT)

6. Built-in String Functions
RSC
CHRS
LEN
POS
SEG$
STRS
VAL
/7« Array Statements
OPTION BASE
- DIM .
B. Subrautine Statements VA
GOSUB /
RETURN
STOP

ON GOSUB
?. File Processing Statements

OPEN
INPUT
PRINT
CLOSE
RESTORE
10.Built-in Subprograms
CALL CLEAR
CALL HCHAR
CALL VCHAR
CALL GCHAR
CALL KEY
ﬁ CALL PEEX
JCALL POKE
CALL MCHL
B. Appendices
C. Glossary
D. Index

Page 3

0319P TI-99/2 Book 4 BASIC Reference Uulde (FINAL DRAF 1)

INTRODUCTION

This manual provides a comeplete explanation of all the commands, statements,
and functions in the TI-929/2 BRSIC language buyilt into your computer. Af ter
you've gained proficiency in programming, this guide serves as your primary
~eference for TI-99/2 BASIC commands, statements, and functions.

Notational Conventions

The discussion for each command, statement, or function begins with a line
that shows its general format, following these notational conventions.

318 83 Bracee indicate a choice of items. You may use only one af the items
enclosed in braces. |

[] Brackets indicate optional 1tems . You may use the items if you
wish, but they are not required. |

e & w an ellipsis indicates that the preceding item may be repeated as many
times as you desire. ‘

italics Italicized words indicate the kind of item or items to be u5éd.
Enter your own choice in place of the italicized words when you enter

the statement or command.

Examples

For each statement or command in this manual, program examples are shown on
the following page. Each line that you must enter is indicated by the prompt
character (>) to the left of the line, just as it appears on the screen.

Lines which the computer places on the screen do naot show the prompt character.

Page 4

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

COMMANDS

When the prowmpt and cursor appear in the lower-left-hand corner of the screeny
vour Basic Computer 99/2 is in Command (Immediate) Mode, and you may enter a
command. Commands are not preceded by line numbers; the computer performs the
task immediately.

Some commands may also be used as statements in programs, as noted in the
discussions,

NEW
NEW

The NEW command erases the program that is currently stored in memury'and
cancels any BREAK or TRACE command in effect. NEW also closes any open files
and erases all variable values and the table in which variable names are
stored.

After the NEW command is performed, the screen is cleared and the message

TI-99/2 BASIC READY is displayed on the screen. The prompt and flashing
cursor (>.) indicate that you may enter another command or a program line.

" BYE

BYE.

The BYE command closes all open files, erases the program and all variables in
memory, and resets the computer, causing the master title screen to raappaar.
To leave TI-99/2 BASIC, always use the BYE command instead of the QUII key
combination because QUIT does not close open files., | .

Page S

0319P TI-99/¢ bHook 4 BASIC Rererence Luide \FINKL URRF V)

NEW

(The screen is cleared, and the following appears at the bottom of the
screen.,)

TI-99/2 BASIC RERDY

#NEW

100 X$="HELL O, GENIUS'"
~110 PRINT X$
~RUN

HELLO, GENIUS'

LR DONE %

+BYE

(The master title screen appears.)

Page %

0319P TI-99/2 Baok 4 BASIC Reference Guide (FINAL DRAFT)

LIST

LIST {line-listl
LLIST "HEXBUS.devige-number“[:lipe-list)

The LIST command is used to print or display the program lines in memory. If
you enter the LIST command without a lipe-list, then the entire program is
printed or displayed. The program lines are always listed in ascending arder,
without unnecessary blank spaces. |

If you enter HEXBUS.device-numbers the program lines are printed on the

' ™
specified device. QDevice-pumbers for HEX-BUS preripherals are listad on
page XX. |

If you enter a line-list, it wmay consist of a single numbers a single number
preceded by a hypheny a single number followed by a hyphen, or a hyphenated
range of line numbers.

Conmand Lines. Riselayed or_Prinied

LIST All program lines

LIST x Program line number x

LIST x-vy Program lines between x and y, inclusive
LIST x- Program lines greater than or equal to x
LIST -y Program lines less than or equal to y

You can stop any listing by pressing BREGK or CLEAR.

If there iz a program in memory and the line~list specifies a line number that
is not in the pragram, the following conventions apply.

-

‘ot For line numbers greater than any in the program~-the
highes t-numbered program line is listed.

'of For line numbers less than any in the program—the lowest—numbered
program ling is listed.

N 1ot | For line numbers between lines in the progras——the next
higher-nunbered line is displayed.

You can use LIST to direct output to a peripheral device. For example,
LIST “HEXBUS.10"

causes your pragram to be printed, if the Printer/Plotter is attached, and
LIST “"HEXBUS.20":100-200 s

outputs program lines 100 through 200 to the RS232 Interface. Note that
HEXBUS and the number of the device must be enclosed in quotation marks. For
mare information about device-pumbers used with the LIST commandy refer to the
owner's manual that comes with the peripheral device.

Page 7/

0319P TI-99/2 Book 4 BASIC Reference Luide WF INAL DRAFT)
»NEW

»100 A=27%.3
120 PRINT A3B
»110 B=-454.8
~LIST
100 A=279.3
110 B=-454.8
120 PRINT A3B

~LIST 110

#LIST 90-120
100 A=279.3
110 B=-456.8
120 PRINT A8

#LIST 110-
110 B=-456.8
120 PRINT A;B

SLIST =110
100 A=279.3
110 B=-454.8

LIST 150-
120 PRINT A5B

=LIST 90 | | -
100 A=2/2.3

“L1ST 105

If you enter a LIST conmand and specifv a line number that is less than 1 or
greater than 32747y the message BAD LINE NUMBER is displayed.

If you specify a line number which is not an integer, the message INCORRECT
STATEMENT is displayed. -

JIf no program is in memory when you enter a LIST command, the message CAN'T DO
THAT is displayed. s)

Page 3

O319F TI-99/2 Book 4 BARSIC Reference Guide (FINAL DRAFT)

RUN

RUN {line-pumber]

The RUN command causes the computer to begin executing the program stored in
memory. Before the program starts running, the computer

'o! sets the values of all numeric variables to zero

ol sets the values of all string variables t0 a null string (one
containing no characters)

'o! checks for certain program errors (see Appendix XX)
lo! closes any open files.

If no lipe-pumher is specified when the RUN command is entered, the computer
starts program execution at the lowest-numbered line in the program.

1f ynﬁ gpecify a line-nuaber, the program starts running at the specified
program line. Note in this example that because the program begins running at
line 110, the value of A remains zera.

If you specify a line-numbher that is not in the programy the wmessage BAD LINE
NUMBER is displayed.

If you enter a RUN command when there is no program in memory, the message
CCAN'T DO THAT is displavyed.

Page 9

N

.

LA

0319P TI-99/2 Book 4

NEW

+100 A=-16
»110 B=25
+120 PRINT R3B
+RUN

-14 @5

% DONE *%
»RUN 110
0 25

%% DONE %%

BISIC Retference Luide

Page 10

(FindL ORAFTY)

0319P TI-99/2 Book 4 BRSIT Reference Guide (FINAL DRAFT)

EDIT

EDIT line-number
lipe-pumber FCIN E
lipe-pumber SHIFT E
lipe-pumber FCTN X
lipe-number SHIFT X

You can change existing program lines in Edit Mode. To enter Edit Mode, type
the EDIT command followed by a lipe—-pumbery or type a lipe—-pumbher followed by

ECIN E (UP 8BROW) or ECIN X (DOWN QRBQW). SHIEI can be substituted for ECIN
in these operations. If you specify a lipe-pupber that is not in the program,

the message BAD LINE NUMBER is displayed.

Entering Edit Mode displays the line specified by the line-pumber. The prowmpt
character (>») is not displavyed. The cursor is positioned in the second
character position to the right of the line number. You can change any
character on the line (except the line number) by using the special keys
described below and typing over the characters you wish to change.

ECIN © or SHIET S (LEET ARROW)--The LEEI ARRUOW (backspace) key moves the
cursor one position to the left. When the cursor moves over a

character, it does not delete or change the character.

ECIN.R or QHIEI_D (RIGHT ARROW)-—The RIGHI ARRQW (forwardspace) key moves the
cursor one position to the right. When the cursor moves over a

character, 1t does not change or delete the character.

ECIN.2 (INS)~-Tha INSeri key works the same in Edit Mode as it does in Command
Mode. See "Tour of the Keyboard" in Book 1.

ECIN_1 (DEL)~-The DELetp key works the same in Edit Mode as it does in Command
Mode. See "Tour af the Keyboard® in Book 1.

ECIN 4 (CLEAR)-~The CLEAR key scrolls the current line up on the screen and
leaves the program line unchanged. The computer then leaves Edit Mode.

FCIN 3 (ERASE)--The ERASE key erases the entire text of the program line
currently displayed. The line number is not erased.

, ENIEB"-The ENTER key replaces the program line in memory with the edited

C (displayed) liney and the computer leaves Edit Mode. MNote that the
cursor does not have ta be at the end of the line for the entire line
to be entered. If you erase the entire text of the program line and

then press ENIER, the program line is deleted.

FCIN.E or SHIEI_E <UP BRROW)--The UP BRBOW key replaces the program line in
pemory with the edited (displayed) line and then displays the next

- lower—-numbered line in the program. If no lower-numbered program line
- exists, the computer leaves the Edit Mode. Note *that the cursor does
not have to be at the end of the line for the entire line to be entered

by the UP BRBOMW key.

Page 11

0319P TI-99.'2 Book 4 BASIC Reterence Uuide (F INAL DRAF 1)

ECIN.X or SHIEI_X (DQWN ARROW)--The DOWN w. ..Ul key replaces the program line
in memory with the edited (displayed; line and then displays the next

higher-numbered line in the praograwm. If no higher-numbered pragram
line exists, the computer leaves the Edit Mode. Note that the cursor
does not have to be at the end of the line for the entire line to be

entered by the DOWN ARRUOW key.

Page 1°

Q319P TI-99/2 Book 4 BASIC Reterence Guide (FINAL DRAFT)
NUMBER

NUMBER

(ipitial-lipel(,ipcresent)
NUIM

When you enter the NUMBER command, the computer enters the Number Mode and
automatically generates line numbers for your program. If no ipitial-line and
no ipcrement are specified, the ipnitial-lipe is 100 and the ipcremept is 10.

If you include an jipitial-lipe and an increment, the first line number
displayed is the specified ipitial-lipe. Succeeding line numbers are
generated by adding the specified increment to the current line number.

If you specify only an ipitial-line, 10 is used as the increment.

If you specify only an ipcrement, 100 is used as the initial-line. Note the
comma before the 5 in the examplej to specify only an ipcrement, precede the
increment with a comma.

To stop the automatic generation of line numbers and leave Number Mode, press
ENTER immediately after the generated line mmber is displayed. The empty
line is not added to the program.

If a line number generated by the NUMBER command is already a line in the
program, the existing program line is displayed with the line number. The
prompt character () is not shown to the left of the line number, indicating
that the line is an existing program line and you may edit the line. If you
"do not want to change the existing line, press ENIER when the line is
displayed. The line is entered as isy and the next line number is generated.

If you enter a pragram line with an erraory, the appropriate error message is
displayedy and the same line number is displayed again. Retype the line
correctly and then enter it again.

If the next line number to be generated in Number Mode is greater than 387467,
the computer leaves Number Mode. |

Page 13

0319 TI-99/2 8Book 4 BAS1C Reterence vuide

»NEW

+NUM

%100 B$="HELLO!'"

110 PRINT B%

~120 (Press ENIER to exit Number Mode.)

+NEW

“NUMBER 10,5

»10 £=38.72

%15 D=16.7

=20 PRINT C3D -

~o¢ (Press ENTER to exit Number Mode.)
L IST

+10 C=38.2

»18 D=16.7

»20 -PRINT C3D

WNEM ﬁ
“NUMBER 50 '

»50 CP="HI!"
»60 PRINT C$
~70 (Press ENIER to exit Number Mode.)

FNEW

NUM 45
»105 PRINT Z
»110. (Press ENIER 1o exit Number Mode.)

> NEW

=100 A=37.1
»110 B=49.4
“NUYMBER 110
110 B=49.6
=120 PRINT A3B |
130 (Press ENIER to exit Number Mode.)
LIST
100 A=37.1
110 B=49.6
120 PRINT A:B

Page 14

(F LHAL DRAFT)

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

Editing in Number Mode

In Number Modey, all of the editing keys may be used whether you are entering .

naWw lines or changing existing program lines. Some of the keys work
differently in Number Mode than in Command Mode.

ENIER

to! If you preses ENTER immediately after a new line number is generated, the
computer leaves Number Mode.

0! If you type a statement after the line number is generated and then press
ENIER, the new line is added to the program. The next line number is then
generated.

‘! If vyou do not edit a program line before pressing ENIERy the line remains
the same in the program. The next line number is then generated.

'o! If' you erase the entire text of an existing program line (leaving only the
line number on the screen) and then press ENIER, the computer leaves
Number Mode. The program line is not removed from the program.

'o! If you edit an existing program line and then press ENIEB, the existing
program line is replaced by the edited line. The next line number is then
genarated.

ECIN £ or SHIET £ (UP ARRQW)—The LP ARRON key works exactly the same as the
ENTER key in Number Mode.

ECIN X or SHIEI X (DOWN ARROW)-~The DOUN BBIIU key works exactly the same as
the ENIER key in Number Mode.

ECIN S or SHIET § (LEEI 8RBOW)--The LEEI ARROW key moves the cursor to the
left. When the cursor moves over a character it does not delete or

change the character. | .

ECIN D or SHIEI D (RIGHI ARROW)——The RIGHI &RROW key moves the cursor to the
right. When the cursor moves over a character,; it does not delete or

change the character.

O ERIN.2 (ING)--The INSert key works the same in Number Mode as it does in
Command Mode. See "Tour of the Keyboard® in Book 1.

ECIN._1 (DEL)--The DELete key works the same in Number Mode as it does in
Command Mode. See "Tour of the Keyboard"® in Book 1,

ECIN 4 (CLEAR)~-~The CLEAR key scrolls th& current line and leaves the program
line unchanged. The computer then leaves Number Mode. Any changes that
were made on the line before you pressed CLEAR are ignored.

-

e

ECIN_3 (ERRSE)~-The ERASE key erases the entire text of the displaved program
line. The line number is still displayed.

Page 15

0319P TI-99/2 Book 4 BASIC Reference Guide «FINAL DRAF)

RESEQUENCE

RESEQUENCE
[initial-linel(,ipcrement]
RES

When you enter the RESEQUENCE command, all lines in the program are assigned
new line numbers according to the specified jpitial-lipe and ipcrement. If no
initial=lipne and increment are specified, the ipitial=line is 100 and the

increment is 10.

The new line number of the first line in the program is the specified
ipitial-lipe. Succeeding line numbers are assigned using the specified

incrementa
If you specify only an ipitial-lipes 10 1s used as the ingnameni.

If you specify only an incremeni, 100 is used as the initial-line. Note the
comma before the 5 in the examples to specify only an inpcremeni, precede the

increment with a comna.

A1l line-number references contained in the program (such as GOTO lipe—-number)
are changed to the new line numbers. AfAny l.ne numbers mentionad in a REM
statement are not changed, because they are nbt essential to the executian of

the program.

Both the initial=-lipe and increment must be positive integers.

Page 14

0319P TI-99/2 Baok 4 BARSIC Reference Guide (FINAL DRAFT)

~NEW

»100 R=27.9
110 B=34.1

~120 PRINT A58
»+RESEQUENCE 2045
SLIST

c0 RA=2/.%?

cd B=34.1

30 PRINT A;8

~RES 50
~LIST

50 A=27.9
60 B=34.1
70 PRINT A;8

SNEW

~100 REM THE VALUE OF "A" IS
PRINTED IN LINE 120
»110 A=A+l '
~120 PRINT A
=130 GOTO 110
=RES 10, §
ALIST
10 REM THE VALLE OF "A“ IS
PRINTED IN LINE 120
15 A=A+1
20 PRINT A
25 GOTO 15

Page 17

0319P TI-99/2 Book 4. BRSIC Refer.nce Uulde (FINAL DRWF ()

If an invalid line-number refercice is used in a program Jine, the REDEQUENCE
command changes the line number reference . 327687. No e ror me: e or

warning 13 given.

If you enter a value for the ipitial-lipe or increment that creates line
numbers areater than 32747, the message BARD LINE NUMBER is displayed. If this

error occurss no line numbers in the program are changed.

If you enter a RESEQUENCE command with no program in memory, the wessage CAN'T
DO THAT is displayed.

Page 183

0319P TI-99/2 Book 4 BASIC Reference Guide (FIMAL DRAFT)
- NEW

100 Z=Z42
+110 PRINT Z
»120 IF Z=50 THEN 150
»130 GATO 100
»RES 10,5
»LIST
10 Z2=Z{2
15 PRINT Z
20 IF Z=50 THEN 327647
25 GOTO 10 |

#RES 32600,100
¥ BAD LINE NUMBER
SLIST .

10 Z=Z42

15 PRINT Z

20 IF Z=50 THEN 32767
25 6070 10

FRES

¥ CAN'T DO THAT

Page 19

0319P T1-99/2 Book 4 BrUlU ReTerwinoe Lulde (B INAL DRRE 1)
SAVE

SAVE CS1
SAVE HEXBUS.device-pnumber.filename

The SAVE command copies the program in the computer's memory to a starage
device. The saved program can later be loaded back into the computer's memory
with the 0.0 command.

To save a program to a cassette recordery position the tape to a blank
section, entar SAVE CS1, and the computer displays instructions for you to
follow. The screen goes blank during the recording process.

After the program has been copied, you have the option of checking whether
your program was recorded correctly. It is recommended that you da so to

~ensure the accuracy of your tape for future use.

¥ CHECK TAPE (Y OR NO7?

If you press Ny the cursor appears at the left of the screen. You may then

enter NEW to clear the computer's memory. If you press Y, directions for
activating the recorder reappear. The screen goes blank during the checking

PTOCEesS.

If the check verifies that the data were surcessfully storeds, the message DATA
0K is displayed. If an error is detected, an error message appears. You may
choose one of these three aptions:

1g' Press R to record your program again. The same instructions listed
previously are displayed.

~lo! Press Q to repeat the checking procedures. At this point, you may wish
to adjust the recorder vaolume and/or tone controls.

'o! Press E to exit from the recording procedure.

vy

Follow the instructions that appear on the screen. If an additional error
message appears indicating that the computar did not properly save your
programy follow the displayed instructions, referring to the "Error Messages”

section of this book to identify the error involved.

' AR _ ; TH Co. "

To save a program to a HEX-BUS peripheral, you must enter the
device-number of the peripheral and Ehe filepape to which the program 1s
stored. For example, the statement |

SAVE HEXBUS.1,.MYFILE

copies from memory the program stored on peripheral device 1 (the

- ™ s

Wafertape eeripheral) in MYFILE. Refer to the peripheral manuals for the
device code for each peripheral and for specific infaormation about filename.

When the SAVE command is performed, the program remains in the memory of the
computer, whether or not an error occurred in recording.

Page 20

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

~OAVE (CS1

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE RECORD
THEN PRESS ENTER

(The écreen goes blank while
the computer records the program.)

®* PRESS CASSEYTE STOP
THEN PRESS ENTER

* CHECK TAPE (Y OR N)}? ¥

* REWIND CASSETTE TAPE
THEN PRESS ENTER

¥ PRESS CASSETTE PLAY
THEN PRESS ENTER

(The screen goes blank while
the computer checks the program.)

(The computer displays one of three messages.)

- % DATA OK

* PRESS CASSETTE STOP
- THEN PRESS ENTER

(Or)

* ERROR - NO DATA FOUND
PRESS R TO RECORD
PRESS C TO CHECK
PRESS € TO EXIT

(Or)

* ERROR IN DATA DETECTED
PRESS R TO RECORD

PRESS C TO CHECK
- PRESS E TO EXIT

'

% I/0 ERROR 644

Page 21

0319FP T1-99/2 Book 4 BASIC Reterence Lulde W IHAL DRAFT)

QLD

OLD CSi
OLD HEXBLIS. dexxce:numbec filename

The OLD command closes all open files, erases the current pragram i1n memory,
and reads and loads a previously saved prodgram rnlo the computer's memory.
You can then run, list, or edit the program.

To load a program stored on A rassette recorder, enter OLD €81 and the
computer displays instructions for you to follow. The screen aoegs blank

during the reading and loading process.

If the computer does not successfully read your program into memory, the
computer prints either ERROR - NO DATA FOUND or ERROR TN DATA DETECTED. You

then may choose from these options.

ip! Press B to repeat the reading/loading procedure. Be sure to check the
items listed in the XX "Cassette Interface" section in Book 1.

io! Press C to check that the data in memory and on the tape are the same.
At this point, you may wish to adjust the volume and tone controls.
Refer to your peripheral manual or to "Tone and Volume Control Settings

in Book 1.

gt Press £ to exit from the procedure.

Follow the instructions that appear on the screen. If an additional error
message appears indicating that the computer did not properly load your
program into memory, follow the displayed irstructions, referring to the
"“Error Messages® section of this book to i:. ntify the error involved.

™

To load a program that is stored on a HEX-Bl:: peripheral, you must enter
the device—-pumher of the peripheral and the filename to which the prngram is
stored. For example, the statewent

OLD HEXBUS.1.MYFILE

™

loads into memary the program stored on peripheral device 1 (the Wafertape
" peripheral) in MYFILE. Refer to the peripheral manuals for the device code

for each peripheral and for specific information about filepawe.

To execute a program that has been loaded into memory, enter the RUN command
when the cursor appears. You can also list the praogram lines by entering the

LIST command.

-,

e

Page :2c

O319P TI-99/72 Boaok 4 BASIC Reference Guide (FINRL DRAFT)

~0LD €S1
¥ REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE PLAY
THEN PRESS ENTER

(The screen goes blank while
the cnpputer reads the program.)

(The computer displays one of two messages.)

* DATA OK

* PRESS CASSETTE STOP CS1
- THEN PRESS ENTER

(Or)

% ERROR - NO DATA FOUND
PRESS R TO READ
PRESS C TO CHECK
PRESS E TO EXIT

* 1/0 ERROR 56

Page 23

0319P TI-99.2 Book 4 BASIC Reference Guide (FINAL DRAF 1}
DELETE

DELETE “HEXBUS.device-number.filepame”

The DELETE command enables you to remove a program or a data file from a mass
™

storage medium on a HEX-BUS peripheral such as the TI Wafertape drive.
Al though the actual file is not deleted, the space it occuplies becomes
available the next time a file is saved.

The DELETE command must include the device-pupber of the peripheral and the
filepame of the file. The filepame is a string expression; if a stiring
constant is used, you must enclose it in quotes.

The statement

DELETE “HEXBUS.1.DATA"
deletas the file stored on device 1 under the name DATA.
You may also remove files stored on some paripheral devices by using the
keyword DELETE in the CLOSE statement. The action performed depends on the
device used. '

»500 CLOSE #7:"HEXBUS.1.":DELETE

The DELETE command does not delete programs or files stored on audio cassettes.

.Page 24

0319P T1-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

BRERK

BREAK lipe-list

The BREAK command is used to set breakpoints in a pragram to cause the
computer to halt or to stop executing the program. When the computer stops at

a breakpoint, the message BREAXPOINT AT line-pumber is displayed. . You may
then enter any command or any statement that can be used as a command.

BREAK can be entered as a statement in a program with no lipge=zlist. When the
BREAK statement is encountered, the computer stops running the program.

BREAK can also be entered as a statement in a program with a lipe-list. BREARK
entered as a command must have a lipe-list. When BREAK is entered with a
line-list, breakpoints are set inmediately before the lines specified in the
lipe-list. These breakpoints cause the computer to halt before performing

each statement in the lipne-list.

The lipe-list can be a single line number or a list of line numbers separated
by commas.

You can resume program execution (beginning with the line where the breakpoint
was set) by entering the CONTINUE command.

R breakpaint does not cause any change in the value of any variables in your
program unless you enter a statement that assigns a new value. Note that in
this example, C still equals zero because the assigrment in statement 110 has

. not been performed.

You cannot enter the CONTINUE command after you have edited the program
(added, deleted, or changed program lines). Otherwise, errors could result
from resuming execution of a revised program. If you enter a CONTINUE command
after you have edited the program, the message CAN'T CONTINUE is displayed on

the screen.

Page 25

0319 TI-9.¢ Book « BASILC Reterence Luide o IHHL DRAF 1)

+NEW

+100 A=2&6.7
»110 C=19.3
115 BREAK
»120 PRINT A{C
~RUN

* BREAKPOINT AT 115

%100 BREAK 120,130
+110 X=10

+120 Y=20

%130 Z=30

»140 PRINT X$Y4Z

» RUN

% BREAKPOINT AT 120

»100 BREAK 120,130
»110 X=10

»120 Y=20

+130 Z=30

3140 PRINT XtY+4Z
»BREAK 140

#RUN

% BREAKPOINT AT 120

>100 BREAK 120,130
+110 X=10

»120 ¥Y=20

+130 Z=30

140 PRINT X+Y+Z
~+RUN

% BREAKPOINT AT 120

- SCONTINUE

* BREAKPOINT AT 130
+CONTINUE

&0

%% DONE #*

e Y

Page 26

0317F T1-99/2 Book 4

+»100 BREAK 120,130
»110 X=10

»120 Y=20

+130 Z=390

140 PRINT X$v+Z
»*RUN

* BRERKPOINT AT 120

~PRINT X3Y5Z
10 0 O

~+100 BREAK 120
»110 X=10

+120 ¥Y=20

+130 Z=30

140 PRINT XiY+4Z
»RUN

¥ BREAKPOQINT AT 120
»110 X=30

»CONTINUE
* CAN'T CONTINUE

BASIC Reterence bu1dé

Page 2? |

FINKL DRARFT)

0319P TI-99./2¢ Book 4 BASIC Reference uujde oF INRL DRAF 1)
When a breakpoint occurss the breakpoint at that line is removed.

Breakpoints set immediately before program lines can be removed by using the
UNBREAK command. These breakpoints are also removed when the line 15 deleted.

Note that the breakpoint at 110 in the example was removed when the breakpoint
accurred, but the breakpaint at 130 was removed by the UNBREAK command.

Breakpoints are removed from all program lines when a SAVE comme .d or a NEW
command is entered.

If the lipe-list specifies a line number less than 1 or greater than 32767,
the message BAD LINE NUMBER is displaved and the BREAK command or statement 1is
ignored (no breakpoints are set at any line specified in the lipezlisl).

If the lipe-list specifies a line number that is a valid line number but 13
not a line in the program, the message WARNINGS BAD LINE NUMBER is displayed.
Brgakpaints are set at the specified valid line numbers.

Page 28

0319P Ti~99/2 Baook 4

~110 X=10

#1280 Y=¢20

+130 £=30

+135 BREAK

»140 PRINT X4Y+1Z
+150 GOTO 135
~BREAK 110,120

#RUN

* BREAKPOINT AT 110
#UNBRERK

~CONTINUE

* BREAKPOINT AT 135
~CONTINUE
40

* BREAKPOINT AT 135

2110 X=10

»120 ¥Y=20

+130 Z=30

»140 PRINT X{4Y+4Z
»BREAK 110,120130

* BAD LINE NUMBER

»110 X=10
»120 Y=20
»130 Z=30
»140 PRINT X$Y4Z

»BREAK 125,130

% WARNING:
BAD LINE NUMBER

RRUN

* BREAKPOINT AT 130
»+CONTINUE
60

*% DONE

we

BASIC Reference Guide

Page 29

(FIMRL DRAFT)

0319P TI-99/2 Book 4 BRSIC Reterence Luide (F INAL DREAF {3
UNBREAK XX CHECK TEXT AND EXAMPLES WITH SOQUIRREL XX

UNBREAK [lipe=list)

The UNBREAK command is used to remove breakpoinis from program lines that are
listed in the line-list of a BREAK command or statau~nt, UNBREAK does not
~emave the breakpoints that occur when a BREAK stati.aenl with no lipe-list 1s
encountered (for example, 115 BRERK).

The optional lipe-list following UNBREAK can be a single line number or a list
of line numbers, separated by commas, from which you want to remove
hreakpoilnts.

The UNBREAK command can also be used as a statement. If an UNBREAK statewment
is entered with no lipe-lists all breakpoints are removed. An UNBRERK
statement that contains a lipezlist removes only those breakpoints at the
lines specified in that lipe-list.

Page 30

0319P TI-99/2 Book 4

NEW
»110 X=10
»115 BRERK
=120 Y=20
%130 Z=30
»140 PRINT X4v+4Z
~BREAK 120,130
={UNBREAK
»RUN
% BREAKPOINT AT 116

»CONTINUE
60

¥% DONE %%

~NEW]

+110 X=10

»120 ¥=20

»130 Z=30 -
»140 PRINT Xt+Y+4Z
»BREAK 1204130,140

~RUN

* BREAKPOINT AT 120
~UNBRERK 130

+CONTINUE

* BREAKPOINT AT 140

+CONTINUE
&0

%% DONE #%

BASIC Reference Guide

Page 31

(FINAL. DRAFT)

Q319P TI-v¥./2 Book 4 BASIC Reterence Guide (FINHL DRAFT)

If the lin&:lisi specifies a line number less than one or greater than 32767,

the message BAD LINE NUMBER 1s displayed, and the command is i1gnored (no
breakpoints are removed at any specified linel.

If the lipe-list specifies a line number that is a valid line number but 13
not a line in the program, the warning BAD LINE NUMBER is displaved.
Breakpoints are removed at the valid line rumbers specified.

Page 32

0318P TI-99/2 Book 3 Advanced BARASIC Programming
Understanding Subroutines--GOSUB, RETURN, and STOP

A subroutine is a group of lines of programming that performs a specilalized
routine. Its purpaose is to avoid unnecessary duplication of program lines.
The lines of a subroutine are written only once in a programy but you can
branch to that set of statements as many times as you desire from selected
polnts i1n the program.

You can branch to a subroutine by means of a GOSUB statement (short for GOto

SUBrautine). The GOSUB statement includes the word GOSUB followed by a line
number. When a GOSUB statement is encountered, control is transferred to the
spacified line number. The GOSUB statement is said to "call® the subroutine.

A subroutine can terminate only when it encounters a RETURN statement.
Therefore, each subroutine must contain at least one RETURN statement. Whan a
RETURN statement is encountered, control is transferred to the line following
the GOSUB statement that called the subroutine.

Subroutines are normally written at the end of a program. QA program should
have either a STOP statement or some unconditional branching statement
immediately before the subroutine(s) so that the computer won't accidentally
execute, or "fall into," the subroutines.

When control is transferred to a line yithin & subroutine, that line and the
lines succeeding it are executed.

The program on the right uses a subroutine to print a filler in betuween
printed lines. By using the subroutine to print the filler, you do not have
‘to type lines 230, 240, and 250 each time you wish to srint the filler. The
filler i3 printed by simply using a GOSUB statement.

Page 39 |

0319P TI-99/2 Book 4

“BREAK 130
~UNBREAK 130, 110150

* WARNING:
BAD LINE NUMBER

+RUN
. 26.7

%* BREAKPOINT AT 130

~CONTINUE
19.3

%% DONE %%
+BREAK 130

*UNBREAK 130, 105

¥ WARNINGS
BAD L INE NUMBER

~RUN
£h.7
19.3

%% DONE %

BASIC keterence (uilde

Page 33

(FINAL DRAFT)

O319P T1-99/2 Book 4 BRSIC Retference Luide (FINAL DRAF)

CONTINUE

CONTINUE
CON

The CONTINUE command may be entered when the program stops running because of
a breakpoint. For an explanation of breakpoints and how they are set, see the

BREAK command. Remember that a breakpoint also occurs when BREAK or CLEAR is
pressed while the program 1s runpilng.

You cannot enter the CONTINUE command if you have edited the program (added,
deletedy or changed program lines) during a breakpoint. Otherwisey errors
could result from starting a revised program in the middle. If you enter a
CONTINUE command after you have edited the program,; the message CAN'T CONTINUE

is displayed on the screen.

Page 34

0319P TI-99/2 Baok 4 BASIC Reterence Guide <FINAL DRAFT)
“NEW
=100 A=9.&

#1100 PRINT A
~BREAK 110

*RUN

* BREAKPOINT AT 110
~CONTINUE
7.6

% DONE %%
~BREAK 110
~RUN

¥ BREAKPOINT AT 110
»110 A=10.1

~CON
* CAN'T CONTINUE

Page 35

0319P T1-99,/2 Book 4 BASIC Reterence GUJdé (FANRL DRAF L)

TRACE

TRACE

The TRACE command enables you to see the order in uwhich the computer Perfurmé
statements as it runs a pragram. After you enter the TRACE command, the line

number of each proaram line is displayed befaore the statement is performed.
The TRACE command is most of ten used to help find errors (such as unwanted

infinite loops) in a program.

The TRACE command may also be placed as a statement in a program. The effect
af the TRACE command or statement is cancelled when a NEW command or UNTRACE

command or statement is performed.

" UNTRACE

UNTRRCE

The UNTRACE command cancels the effect of the TRACE command. The UNTRACE
command may also be used as a statement in a program.

Page 36

0319 T1--9%/2 Book 4 8R5JC- Retference Guide (FINAL DRAFT)
“NEW

»100 PRINT "HI"
+110 B=2/.9
»120 PRINT :8
+TRACE

>RUN

2100 HI
£110<120:
e7.9

%% DONE #*%

+INTRACE

~105 TRACE
~RUN
HI
<1105, <120%
2/.9

¥% DONE »%

+NEW

»100 FOR K=1 10 2
#1100 PRINT K

»120 NEXT K
+TRACE

> RUN
£1003<110> 1
£1203<110> 2
{1203
%% DONE *%

>UNTRACE
+RUN
1

e
%% DONE M

Page 37

0319P TI-99.2 Book 4 BAS il Reterence Luirde vFANRL DRRAF V)

GENERARL PROGRAM STATEMENTS

General program statements do not serve an input-output function. They
include the LET statement, which enables you to assign values to variables,
the STOP, END, REMark, and program—-control statements.

Program control statements, including the GOTD, the ON GOTQ, the IF THEN ELSE,
the FOR TOQ STEP, and the NEXT statements enable vou to program loops and
conditional and unconditional branches.

LET

(LET] variable=expressian

The LET statement enables you to assign values to yariables in your pProgram.
The computer avaluates the gxpressign to the right of the equals sign and puts
its value into the variahle specified to the left of the equals sign. Note
that the keyword LET wmay be opitted from the assigmment statement.

The yaciahle and tha&urﬁ:inn must correspond in type: numeric expressions
must be assigned to numeric variables, and string expressions must be assigned

to string varciahbhles.

The rules governing averflow and underflow in evaluating a numeric expression
apply to the LET statement. (See "Numeric Constants™ (XX) for more
information.) JIf the length of an evaluated string expressian exceeds 25
charactersy the string is truncated on the right, and the program continues.
NO warning is given.

You may use the relational operators in numeric and string ®xpcessiqos. The
result of a relational operator is ~1 if the relationship is true and is 0 if

the relationship is false.

Page 38

0319P TI-99/2 Book 4

~NEW

»100 LET M=1000
»110 LET C=186000
120 E=M%C"2
»130 PRINT E
-~ RUN

3.4596E113

%% DONE %%

~NEW

100 X$="HELLQ, "
+110 NAME$="GENIUS!'"
=120 PRINT X$;NAMES
> RUN

HELLO, GENIUS!

%% DONE *¥

+ NEW

>100 LET A=20
110 B=10
120 LET C=A>B
»130 PRINT A38;C
»>140 C=A<B
»150 PRINT A;B;C
 RUN

20 10 -1

20 10 ©

DONE %%

BASIC Reference Guide

Page 39

(FINAL DRAFT)

Q319P TIu??/é Book 4 BASIC Reference Guide (FINRL DRAF ')

REMark

REM remark

The REMark statement enables you to explain and document your program by
inserting comments in the program itself. When the computer encounters a
REMark statement while running your programy 1t takes no action but proceeds
to the next statement.

You may use any printable character in a REMark statement. The lenath of the
REMark statement is limited by the length of the input line (112 characters or
four lines on the screen). If you do not wish to break a word in the middle,

- press the SPOCE BAR repeatedly until the cursor returns ta the left side of
the screen, and then begin typing again.

END
END

The END statement terminates your program when this statement is executed.
END may be used interchangeably with the STOP statement in TI-99/2 BASIC.
Although the END statement can appear anywhere in the program, it is normally
placed in the last line number of the program to end the program both
physically and logically. In contrast, the STOP statement is generally used
- 1f. you want ather termination paoints in your program.

In TI-99/2 BASIC you are not require&'tn place an END statement in the

program. The program automatically stops after it executes the
highest—-numbered line.

Page 40

0319P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT)
» NEW

»100 REM COUNTING FROM 1 TO 1

0
»110 FOR X=1 TO 10
=120 PRINT X3
»130 NEXT X
#RUN
1 2 3 4 5 &6 7 8 9
10
%% DONE %%

~NEW

»100 A=742

»11Q B=425

- +120 REM NOW PRINT THE SUM OF
A AND. B

130 PRINT A8

> RUN
1187

% DONE %%

~NEW

»100 A=10
»110 B=20
120 C=A¥*d
»130 PRINT C
>>140 END
»RUN

200

'2;-*#iDdNE e

Page 41

0319P TI-99/2 Book 4 BASIC Reterence Luide (F INAL DRRFT)
GOTO

GOTO

line-number
GO TO

The GOTO statement enables vyou to transfer control to a 5peéified line within
a program. When the computer reaches a GOTO statement, it jumps to the

statement specified by the lipe-oumber. This is called an vncanditional
branch.

In the program on the right, line 170 is an upcoaditional branchi the computer
always skips to line 140 at this point. Line 160 is a conditiopal branch (see
IF THEN ELSE); the computer jumps to line 180 only if COUNT and DAYS are equal.

If the specified lipe-number does not exist in your program, the program stops
and prints the message BAD LINE NUMBER.

Note that the space between the words GO and TO is optional.

ON GOTO

ON pumeric-expression GOTO
lipe-puaber {slipe-pumbec])(. . al

ON pumeric-expression GO TO

The ON GOTO statement tells the computer to jump to one of several program
lines, depending on the value of the puperic-expression.

The computer first evaluates the pumeric-espression and rounds the result to
an integer. This integer becomes a pointer for the computer, indicating which
program line in the ON GOTO statement to perform next. If the value af the
pumeric-expression is 1, the computer proceeds to the statement specified by
the first lipe-pupber. If the value is 2, the computer proceeds to the
statement specified by the second lipe-pumber. and so on.

If the rounded value of the pumeric-expression is less than 1 or greater than
~ the number of lipe-oumbers listed in the ON GOTO statement, the program stops

' and prints BAD VALUE IN line-pumbec. -If the line-oumber you specify is

outside the range of line numbers in your program, the message BAD LINE NUMBER
is displayed and the program stops running.

Page 42

0319P TI-99/2 Book 4 BASIC Reterence Guide (FINAL DRAFT)

>100 K=10
~110 PRINT "K= "§K
#1200 K=K¥*2
~130 GATO 119
+RUN
10
20
30

(Press BREBK to stop the proaram.)

> NEW

+100 INPUT X
>110 ON X GOTO 120,140,1460,18
0,200
+120 PRINT "X=1"
»130 GOTO 100
~140 PRINT "X=2"
~150 GOTO 100
»160 PRINT "X=3"
»170 GOTO 100
»180 PRINT "X=4*
»190 GOTO 100
+200 END
»RUN

* 8A0 VALUE IN 110

Page 473

0319P TI~-99.2 Book 4 BASIC Reterence Uuide \FLIMNAL DRAF)
IF THEN ELSE
IF conditian THEN lipel [ELSE lineg]

The IF THEN ELSE statement enables you to change the normal sequence of
program execution by using a conditiopnal branch.

The computer evaluates the conditigp included in the statement as either truye
ar false.

If the conditipn is true, the computer jumps to linel, the line number
following the word THEN.

If the condition is false and the ELSE option iz used, the computer
jumps to lipeg, the line number following the word ELSE.

If the condition is false and ELSE is omitted, the computer continues
with the next program line.

The conditiop being tested can be a relational expression or a numeric
expression. Relational expressions evaluate to either true or false. Numeric
- axpressions evaluate tg 0 or nonzero values} only a zero value is considered

false.

In relational expressions,; numeric expressions must be compared to numeric
expressions and string-expressions to string expressions.

Numeric-expressions are compared algebraically.

String-expressions are compared left~to-right, character by charactery
using the ASCII character codes. A character with a lower ASCII code
is considered less than one with a higher ASCII code. Thus, you can
sort strings into numeric or alphabhetic order. If one string is longer
than the other, the comparison is made for each character in the
shorter string. If there is no difference, the computer considers the
longer string to be greater. ' |

The condition can be a logical expression by using multiplication for a
logical AND and addition for a logical OR. The copnditiop in the example,

IF (5<3)%#(3<4) THEN 150 [IF (S<3)AND(3<4) THEN 150]

is false. The product of (5<3)¥(3<4) is zero (false) because one of its
factors is zero (false).

The condition in the example,

IF (5<3)+(3<4) THEN 150 | [IF (5<3)0R(3<4) THEN 150]

e

is true (has a nonzero value) because eQen though 5<{3 is false and has a value
of zerao (Q), 3¢4 is true and has a nonzero value, which when added tp zero
produces a nonzero result.

Page 44

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
NEW

»100 INPUT “HOW MANY VALUESY"IN
»110 INPUT "VALUE?"IR

+120 L=A
+130 N=N-1

»140Q IF N<=0 THEN 170

+180 INPUT “VALUE?"IA

=160 IF LA THEN 130 ELSE 120
»170 PRINT L3;"IS THE LARGEST"
~RUN

HOW MANY VALUES?3

VALUE?456

VALUE?221

VAL UE?292

- 456 IS THE LARGEST

%% DONE *%
~NEW

>100 INPUT "A$ IS ":A$
>»110 INPUT "B$ IS “:8%
»120 IF A$=B$ THEN 140
130 IF A$<B$ THEN 180
»140 PRINT “B$ IS LESS*
»>15Q GOTO 190
»160 PRINT "A$=B%"
»170 GOTO 190
»180Q PRINT *B$ IS GREATER®
>190 END
»RUN

A% 1S TEXAS

B$ IS TEX

B$ IS LESS

¥% DONE W%

= RUN

A$ IS TAXES
B$ IS TEX

‘B¢ IS GREATER

X% DONE %%
+NEW

»100 INPUT "R IS ":R
»110 INPUT “8 IS "IB |
+$20 IF A+B THEN 180 g
+130 PRINT “RESULT IS ZERO, E
XPRESSION FALSE™
»140 GOTO 100
»150 PRINT “RESULT IS NON-ZER
D, EXPRESSION TRUE®
+160 6ATQ 100
#RUN .
A 1S 2
B IS 3 :
RESULT IS MON-ZERO, EXPRESSION TRUE
RIS 2 '
B IS5 -¢

(Press BREABK to end loop.)

Page 45

0319P T1-99/28 Book 4 BASIC Referance Guide (FINAL DRAFT)

FOR TO STEP

FOR conicol-variable=ipitial-value TO lim.t [(STEP incremenil

The FOR TO STEP statement and the NEXT statement are used together to form a
FOR-NEXT loop, which may be used for programming repetitive processes.

The values you assign to the ipitial-value, limit, and increment determine how

many times the loop is repeated. The copirol-vaciable is a numeric variable
that acte as a counter for the loop. When the FOR TO STEP statement is

performed, the control-variable is set to the ipitial-value. The computer
then performs program statements until it encounters a NEXT statement.

When the NEXT statement is encountered, the computer adds the opti~nal STEP
ipcrement to the control-variable. If STEP is omitted, the computer uses an
ipcrement of +1. (If the ipcremept is a negative value, the capirol-vaciable
is reduced by the STEP amount.) The computer then compares the
contral-variable to the value of the limii. If the copirol-vaciable does not
yet exceed the limit, the computer repeats the statements following the FOR TO
STEP statement until the NEXT statement is again encountered. If ‘the new -

value for the cootrol-variable is greater than the limit (oc lessy if the
inpcrement is negative)y the computer leaves the loop and continues with the
program statement following the NEXT statement. The value of the
control-variahle is not changed when the computer leaves the FOR-NEXT loop.

- The limit and the STEP increment are numeric expressions that are evaluated
once during a loop performance (when the FOR TO STEP statement is first
ancountered) and remain in effect until the loop is finished. RAny changes
made in these values while a loop is in progress have no effect on the number

of times the loop is performed.

Page 44

0219P TI-99.2 Book 4 BRSIC Reterence UGuide

FNEW

»100 REM COMPUTING SIMPLE INT
EREST FOR 10 YEARS
»110 INPUT “PRINCIPLE? "If
+120 INPUT "“RATE? "“IR
+130 FOR YEARS=1 TO 10
>»140 P=P4+(P¥R)
#1850 NEXT YEARS
»160 P=INT(P%100+.5)/100
»170 PRINT P
#RUN

PRINCIPLE? 100

RATE? .077S

210.95%

*% DONE %%

~NEW

»100 REM EXAMPLE OF FRACTIONA
L INCREMENT
»~110 FOR X=.1 TO 1 STEP .2
»120 PRINT X; ‘
»130 NEXT X
- 2140 PRINT X
#~RUN
.1 -3 l5 -7 l?

1.1

%% DUONE **

~NEW

+100 L=5
»110 FOR K=1 TO L
- #120 L=20

3130 PRINT L3K

»140 NEXT K
~RUN
20
20
20
cO
- 80

O D Wy -

%% DONE *%

Page 4/

oFIRAL DRAF 1)

0319P TI-99/2 Book 4 BASIC Retference Guide (FINAL DRAFT)

If you change the value of the cantcal-variable while the loop 1s being
perfarmed, the number of times the loop is repeated is changed.

In TI-99/2 BRSIC the expressions for ipitial-valuer limit, and loccemeni are

evaluated before the jinitial-value is assigned to the control-variable. Thus,
in line 110 of the program on the right, the value 5 is assigned to the limii
before the control-variahle K is assigned a value. The loop is repeated five

times, not just once.

The sian of the copirol-vaciable can change during the performance of a
FOR—NEXT loop. |

If the initial-value is greater than the limif (or less than the limit for a
negative increment), the loop is skipped and the program continues with the
statement following the NEXT statement.

1'If}{hé value of the inc:améﬁi is zeroy the computer displays the error message
BAD VALUE IN lipe-uvumber and the program stops running.

After you enter a RUN command, but before your program is performed, the
computer verifies that you have the same number of FOR TO STEP and NEXT
statements. If you do not have the same number, the message FOR-NEXT ERROR is

displayed and the program is not run,.

s

Page 49

0319P TI-99/2 Book 4 BASIC Reterence Guide «FINBL DRAFI)
~NEW

2100 FOR K=1 TO 10
+110 K=K+1
»120 PRINT K
+130 NEXT K
»140 PRINT K
»RUN
e
4
b

8
10
11

%% DONE *%
~NEW

+100 M=5
»110 FOR K=1 TO M
»>120 PRINT K;
»130 NEXT K
>RUN

1 2 3 4 5

¥%¥ DONE #¢

»NEW

»100 FOR K=¢ 10O -3 STEP -1
#1100 PRINT Kj
»120 NEXT K
+RUN
2 1 0-1-2-3

%% DONE ¥
+NEW

. »100-REM INITIAL VALUE TOO GR
EAT

110 FOR K=6 TO &

+120 PRINT K

+130 NEXT K

~RUN

L X% DONE %%

. %
i

Page 49

0316 TI1-99/2 Book 4 BASIC Reterence (uide (FINRL DRAFT)

FOR TO STEP

FOR-NEXT loops may be "nested®; that is, one FOR-NEXT loop may be contained
wholly within another. Be careful, however, to observe the following -
conventions.:

Each FOR TO STEP statement must be caired with a NEXT statement.

Different control-variables must be used for each nested FOR-NEXT loop.

I1f a FOR-NEXT loop contains any portion of another FOR-NEXT loops it
muat contain all of that FOR-NEXT looe. Otherwise, the computer stops
running the program and prints the error message CAN'T DO THAT IN

lipe-nuwbecr.

You may branch out of a FOR-NEXT loop using GOTO, ON GOTO, or IF THEN ELSE
statements, but you may not branch into a FOR-NEXT loop using these
statements. You may, however, use GOSUB or ON GOSUB statements to lesave a
FOR-NEXT loop and then return to the loop. Be sure that you do not use the
same caopirol-variable for any FOR-NEXT loops you may have in subroutines.

-

Page 50

0319P TI~-99/2 Book 4

=NEW

100 REM FIND THE LOWEST THRE
E DIGIT NUMBER EQUAL TO THE
SUM OF THE CUBES OF ITS DIGL

T8

»110 FOR HUND=1 TO ¢

»120 FOR TENS=0 TOD 9

»130 FOR UNITS=0 TO 9

»140 SUM=100%HUND}10% TENSHUNI

TS

»150 IF SUM<>HUND™3+TENS"3+UN

ITS"3 THEN 180
+1460 PRINT SUM
»170 GO TO 210
180 NEXT UNITS
»190 NEXT TENS
>200 NEXT HUND
- >210 END
»RUN

183

#% DONE *%

SNEW

»100 FOR K=1 TQ 3
»110 PRINT K

+120 GOSUB 140
+130 NEXT X

140 FOR K=1 TG &
»150 PRINT K3
>160 NEXT K

»170 RETURN

L RRUN.

1
1 2 3 4 5

* CAN'T DO THAT IN 130

8ASIC Reterence Luide

Page Si'

(P LAl DRAF 1)

03219P TI-99/2 Book 4 BASIC Reference (Guide (FINAL DRAFT)

NEXT .

NEXT copirol-variable

The NEXT statement is always paired with the FOR TO STEP statement. The
control-variaple is the same one that appears in the corresponding FOR TO STEP
statement.

The NEXT statement actually controls whether the computer repeats the 1oop or
oxits to the program line following the NEXT statement. When a NEXT statement
is performed, the computer adds the previously evaluated inccesent in the STEP
to the copirgl-variahle and then tests the conirol-vaciable to see if it
axceeds the previously evaluated limit specified in the FOR TO STEP

statement. If the contral-variahle does not exceed the limit, the loop 15
repeated.

Page &2

0319P TI-99.2 Book 4 BRSIC Keterence Luide vFLINRL DRAF 1)

»NEW

~100 FOR X=1 TO 10
+110 PRINT X3
+120 NEXT X
~RUN
1 2 3 4 5§ 6 7 8 9 10

¥% DONE #%

»NEW

>100 REM ROCKET COUNTDOWN
»110 CALL CLEAR

»120 FOR K=10 TO 1 STEP -1
»130 PRINT K

»140 FOR DELAY=1 TO 400
+150 NEXT DELAY

»160 CALL CLEAR

Y170 NEXT K

>180 PRINT "BLAST OFF!"
>RUN

(Computer fiaﬁhea countdown.?
BLAST OFF!

% DONE ¥

Page 53

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

INPUT-QUTPUT_STATEMENIS

INPUT-OUTPUT statements (PRINT, DISPLAY, INPUT, READ, DATA, RESTORE) enable
you to transter data in and out of your program.

Data can be input to your program from three types of sources.

lo! fram the keyboard——us1ng the INPUUT statement
lo! internally from the program itself--using the READ, DATA, and

RESTORE statements
ip! from files stored on peripheral devices-—using the INPUT statement

Data can be output to two types of devices:

‘o! the screen-—using the PRINT and DISPLAY statements
lo! files atored on peripheral devices-—-using the PRINT statement

Refer to the “File Processing" section of this manual for information on using
input-qutput statements with peripheral devices.

Page 54

0319P T1-99/2 bBook 4 BASIE Reterence Luide sFLNHL URHE §)
INPUT

INPUT (ipput-proopt:) variable~-list

(For information on the use of the INPUT statement with a file, see the "File
Processing” section.)

This form of the INPUT statement is used when you enter data via the
keyboard. The INPUT statement causes the pragram to pause until valid data

are entered.

Although the computer usually accepts up to ane input line (4 lines aon your
screen) for each INPUT statement, a long list aof values may be rejected by the
computer. If you receive the message LINE TOO LONG after entering an input
line, divide the lengthy line into at least two separate INPUT statements.

Enteripg_the Ipoput Statement

When an inputi-prompt 1s used, it must be followed by a colon. The
r\opui-promet is a string expression (constant or variable) that can be used to
prompt for values to be entered from the keyboard (if a string constant is
usedy it must be enclosed in quotation marks)., The INPUT statement displays
- the ipput-prompt message and waits for data to be entered.

When an ippui-prompt is not used, the computer displays a question mark (?)
followed by a space and waits for data to be entered.

The variable-list contains one or wmore variables that are assigned values when
the INPUT statement is performed. The variables may be numeric and/or string
variahbles. If the variahle-list contains two or mare variables, they must be

. separated by commas., The values to be assigned to these variable names must
also be separated by commas. L

Page 55

031%P TI-99/2 Book 4 BASIC Reference [uide (FINRL DRAFT)

NEW

=100 INPUT B
»110 PRINT B
>RUN

? 25

25

¥% DUONE %

NEW
»100 INPUT “COST OF CAR: ":
»110 A$="TAX: *
=120 INPUT A$:C
%130 INPUT "SALES "&A%:X
»140 PRINT B3C;X

>»RUN

COST OF CAR: 5500

' TAX: 500

SALES TAX: 500

8500 500 500

*% DONE #%

FNEW

»100 INPUT A,B$,C,D
»>110 PRINT A:B$:C:D
> RUN

? 10,HMELLD,25,3.2

Lo - .

HELLO
25
3.2

##% DONE **

Page 56-

0319F TI1-99/2 Book 4 BRSIC Reterence Guide \F LNAL DRRF ()
INPUT

Reseanding to _apn Ipeut Statement

When an INPUT statement with more than one variable in the variable-list is
performed, the values corresponding to the variables must be entered in the
same order as they are listed in the INPUT statement. All the values must be
entered in one input line (up to 4 screen lines) and must be separated by
commas. When entering string values, you may enclose the string in quotes,
although the quotation marks are not required. Howevery, a string that
contains a commay 4 quotation marky or leading or trailing spaces gust be

enclosed i1n quotes,

Variables are assigned values from left to right in the variabhle—~list. Thus,
subscript expressions in the variable—-list are not evaluated until variables
to the left have been assigned values.

Page 5?

O319P TI-9¥/2 Book 4 BRS1L Reterence Gulde (F AHRL DRKE 1)

»NEW

»100 INPUT A%
»110 PRINT A%$::
»120 INPUT B$
130 PRINT B$::
»140 INPUT C$
=150 PRINT C$::
+140 INPUT D$
»170 X=500
»180 PRINT D§sX:s
>RUN
? "JONES, MARY"
JONES, MARY

? "“UHELLO THERE"""
"HELLO THERE®

? "JAMES B. SMITH, JR."
JAMES B. SMITH, JR.

~? “SELLING PRICE IS *
SELLING PRICE IS 500

%% DONE %%

NEW

»100 INPUT K,A(K)
»110 PRINT K:IA(K)
+RUN

? 347

3

7

%% DONE W%

Page 59 |

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFY)
INPUT

When you enter information in response to an INPUT statement, the information
15 validated by the computer. If the input data are invalid, the message

F

% UARNING:
INPUT ERROR IN lipe-pumber
TRY RGRIN:

appears on the screeny; and you must reenter the data. The computer determines
the following input to be invalid:

'o! Data that contain more or fewer values than requested by the INPUT
- statement.
'o! A string constant entered when a number is required. (Note: @A number

ig a valid string, so0 you may enter a number when a string constant 1is
required,)

If you enter a number that causes an overflow; the message

%® WARNING:

NUMBER TOO BIG IN line-pumber
TRY AGAIN:

appears on the screen and you must reenter the data. If you snter a mumber

that causes an underflows the value is replaced by zero. NO warning nessage
is given. |

§
' vy

Page 5?

0319YP T1-99/2 Book 4

SINEW

+100 INPUT A,B$
»110 PRINT A3B$
> RUN

? 12,HI,3

* WARNING:
INPUT ERROR IN 100
TRY AGAIN: HI,3

% WARNING:
INPUT ERROR IN 100C
TRY AGAIN: 23,HI
23 HI

%% DONE W

>NEW

»100 INPUT R
+110 PRINT A
»RUN

? d3E139

* WARNINGS

NUMBER TOO BIG IN 100

TRY AGAIN: 23E~-139
0

#% DONE #*

BASIC Reference Gulide

Page 66-

(FINAL ORAFT)

0319P TI-29/2 Baok 4 BRS1LC Reterence ﬁu:dé P ANAL DRAFY)
READ

READ yariable-list

The READ statement enables you to read data stored inside your program in DATA
statements. The variable-list specifies those variables that are to be
assigned values. Variable names in the variable-lisi may include numeric
variables and/or string variables.

The computer reads each DATA statement sequentially from left to right and
assigns values to the variables in the variable-list from left to right.
Subscript expressions in the za:;ahle_l;gi are not evaluated until variables
- to the left have been assigned.

Each time a READ statement is performed, the variables in its variable-list
are assigned values from a DATA statement. If a DATA statement does not
contain enough values to assign to the variablas, the READ statement assigns
the values in the next DATA statement until all the variables have been
assigned a value. If a READ statement does not assign all the values in a
DATA statement,; the next READ statement performed assigns the next unread‘d;ta

value(s).

DATA statements are normally read in line-number order. You can override this
sequencing, however, by using the RESTORE statement.

- By following the program on the right, you can see how the READ, DATA, and

' RESTORE statements interact. In line’120, the computer begins assigning

values to A and B from the DATA statement with the lowest line number, line
180. The first READ, therefore, assigns A= and B=4. The next performance af
the READ statement still takes data from line 180 and assigns RA=4y, B=B. The
third READ statement assigns the last item in line 180 ta the variable A and
the first item in line 190 to the variable By, so that A=10 and B=12, The
fourth READ, the last in the J-loop, continues to get data from line 190, soO
that A=14 and B=16. Before going through the K-loop agalnp however, the
computer encounters a RESTORE statement in line 180, which directs it to get
data from the beginning of line 190 for the next READ statement. The computer
then completes the program by reading the data from line 190 and then from
line 200.

Page &1

0319P TI~99,/2 Book 4 BAwiL Reference Guide (FINAL DRAFT)

+100 FOR K=1 TQ 3

}110 REQD er

»120 PRINT X3V

+130 NEXT K

~140 DATA 22415,36,52,48,%6.5

~RUN
ag 15
36 &2
48 96.5

¥% DONE #*

~NEW

»>100 READ K,ACK)
»110 DATA 2,35
»>120 PRINT A(K)
>RUN

35

% DONE %%

~NEU

»100 FOR K=1 TO @
»110 FOR J=1 TO 4
»120 REARD A,8
»130 PRINT R;Bj
»140 NEXT]

»150 PRINT

»160 RESTORE 190
»170 NEXT K

>180 DRTA 2,4946,8,10

.. »190 DATA 12,14,16,18

200 DATA 20,22,24,26
> RUN
e 4 5§ 8 10 12 14 16

12 14 16 18 20 22 24

%% DONE #*

Page é&c

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

READ

When data are read from a DATA statement, the type of data in the data list
and the type of variables to which the values are assigned must correspond.
If you try to assign a string value to a numeric variable, the message DATA
ERROR IN lipe-number of the READ statement where the error occurs appears oOn
the screen, and the program stops running. Remember that a number 1s a valid
string, so numbers wmay be assigned to either string or numeric variables.

| When a READ statement is performed, if there are more names in the
variahle=-list than values remaining in DATA statements, a DATA ERROR message

iz displayed on the screen and the program stops running.

If a numeric constant that causes an underflow is read, its value is replaced
by zero--nQ warning is given-~and the program continues running normally. If
a numeric constant that causes an overflow is read, its value is replaced by
the appropriate computer limit, the message WARNING: NUMBER TOO BIG IN
lipe~pumher is displayed on the screen, and the program continues. For
information on underflows overflow, and numeric limits, see "Nuweric

Constants.”

Page 43

0319f TI-99/2 Book 4
~NEW

100 READ A,8

>110 DATA 12,HELLO
»120 PRINT A38
+RUN

* DATA ERROR IN 100

>NEW

100 READ A, B
110 DATA 12E-13§
120 DATA 36E142
130 PRINT :A:B
140 READ C

PRUN

* WARNING:

NUMBER TDO BIG IN 100

0
Q. FFFIPEL

* DATA ERROR IN 140

BASIC Reference Guide

Page &4

(FINAL DRAFT)

0319P TI~-99/2 Book 4 BRSIC Reterence Guide {F INAL. DRAF V)
DATA

DATA data-list

The DATA statement enables you to store data within your program. The
data—list contains values assigned to the variables specified in the variable
list of a READ statement. The values are assigned when the READ statement 1s
performed. Items in the data-list are separated by commas. When the computer
encounters a DATA statement, it proceeds to the next statement with no other

- affect.

DATA statements may appear anywhere in a programy but the order in which they

appear is important. Data from the datazlisis are read saquentially,
beginning with the first item in the first DATA statement. If your program

includes more than one DATA statement, the DATA statements are read in
ascending line-number order unless otherwise specified by a RESTORE
ctatement. Thus, the aorder in which the data appear within the data=1list and
the order of the DATA statements within the program normally determine the
order in which the data are read.

Each value in the gdata-list must correspond to the type of the variable to
which it is assigned. Thus, if a numeric variable is specified in the READ
statement, a numeric constant must be in the corresponding place in the DATA
statement. Remember that a number is a valid string, SO YOuU Way have a number
in the corresponding place in the DATA statement when a string copstant is

required.

In a DATA statement, string constants that contain a comma, a quaotation mark,
or leading or trailing spaces pust be enclosed in quotation marks. If a
string constant does not contain one of these characters, you may omit the

; qgQiatian.narks.

1f a DATA statement contains adjacent commas, the computer assigns a null
string (a string with no characters) to the variable being assigned. In the
example on the right, the DATA statement in line 110 contains two adjacent,
commas. Thus, a null string is assigned to B$. |

Page &5

O0319P T1 v9/2 Baow BHS L ke erenuce uulde

~NEW

»100 FOR K=1 TO §
»110 READ AsB

»120 PRINT AsB

»130 NEXT K

+140 DATA 2141617:3
»150 DATA 1,2,3¢4:5
~RUN

H oo

4q
7
1
3
5

%% DONE #*
SNEW

>100 READ A$,B%$,C,0

»110 PRINT A$:8$:C:D
»120 DATA HELLO,"JONES, MARY®
285 3.1416
»RUN

HELLO

JONES, MARY

2B

3.1416

%% DONE **

INEW
»100 READ A$,B$,C

%110 DATA HI, 2

120 PRINT "A%$ IS "iAS
%130 PRINT “B$ IS “;B$
>140 PRINT “C IS *;C
> RUN

A$ IS HI

B$ IS

. CIs 2

b

% DONE W

Page &4

LU S W B o 1 T T Y Y R

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)
RESTORE

RESTORE [lipe-pumber]

(S5ee the "File Processing” section for information about using RESTORE in f11e
Processing.)

This .form of the RESTDRE statement tells your program which DATA statement to
use with the next RERD statement.

When RESTORE is used with no lipe-number . the,next READ statement performed
assigns values beginning with the first value in the first DATA statement in

the program.

When RESTORE is followed by the line-number of a DATA statement, the next READ
statement performed assigns values beginning with the first value in the DATRA

statement specified by the line-number.

b
“

If the lipe-punber specified in a RESTORE statement is neither a DATA
statement nor a program line-number, the next READ statement performed starts
at the first DATA statement whase line-number is greater than the one
specified. If there is no DATA statement with a line-number greater than ar

- equal to the one specified and a READ statement is perforwed, the error

" measage DATA ERROR is displayed. If the lipe-number specified is greater than
the highest lipe-opumbec in the program, the program stops running and the
message DATA ERROR IN lipne-pumsher is displayed.

Page 67

0319PF TI-99/2 Book 4 BASI{C Reference Luide

+100 FOR K
+110 FOR J
»120 READ A
#130 PRINT A}
»140 NEXT J
»180 RESTORE 180
2160 NEXT K .
»170 DATA 12,33,41,26,42,50
»180 DATA 10,20,30,40,50
»RUN
i 33 41 26 10 20 30
40 -

H i

1 70 &
1 70 4

%% DONE %%
~NEW

100 FOR K=1 TO &
»110 READ X
120 RESTORE
»130 PRINT X;
>140 NEXT K
»150 DATA 10,20,30
> RUN
10 10 10 10 10

%% DONE %
SNEW

»100 REARD A,8

»110 RESTORE 130
»120 PRINT AjB

»130 READ C,D

»140 PRINT C;D.

»180 DATA 26.9534.47
»RUN

26.9 34.67
26.9 34.67

%% DONE **

»110 RESTORE 145
+RUN
26.9 34.67
6.9 34.67

*% DONE ¢

-+

~»110 RESTORE 185
> RUN
26.9 34.67

. % DATA ERROR IN 110

Page 68

(FINAL DRAFT)

031i9P TI-99/2 Book 4 BRSIC Reference LGuide (FINAL DRAFT)
DISPLAY

DISPLAY [erini-lisat]

The DISPLAY statement is identical to the PRINT statement uhen you use 1t to
print items on the screen. The DISPLAY statement cannot be used to write to
any device except the screen. For a complete discussion of how to use this

statement, see the instructions for the PRINT statement.

Page &9

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

ANEW

»100 A =38.6

>110 B§="HI'!'"

»120 C=49.7

»130 PRINT B$:A;C
»>140 DISPLAY B$:IR;C

~RUN
HI!!
35.6 49.7
HI!!
35.6 49.7
%% DONE *¥

Page 70

0319P TI-99/2 Book 4 BASIC Reterence Guide (FINAL ORAFT)

PRINT

PRINT ({print-listl

(For information on using the PRINT statement with files, see the "File
Processing”" section.)

The PRINT statement lets you print numbers and strings on the screen. The
print-list congists of

'o! print items—numeric expressions and string expressions to be printed
on the screen and TAB functions that control print positioning
(similar to the TAB key on the typewriter).

‘o! print separators~-—the punctuation (commas, semicolons, and colons)
between print items serving to indicate the positioning of the data on
the print line.

When the computer performs a PRINT statement, the values of the expressions in
the print-list are displayed on the screen in arder from left to right, as
specified by the print separatars and TAB functions.

Printipg._ Stirinas

String expressions in the peini-list are evaluated to produce a string
result. There are no blank spaces inserted before or after a string. If you
“wish to print a blank space before or after a string, you must include the
space in the string or insert it separately within quotation wmarks.

Numeric expressions in the print-list are evaluated to produce a numeric
result. Positive numbers are printed with a leading space (instead of a plus
sign), and negative numbers are printed with a leading minus sign. All
numeric values are printed with a trailing space.

Page 71

019p TI-99/2 Book 4 BASIC Reference Guide

SNEW

=100 A=10
110 B=20
120 STRING$="TI COMPUTER"
%130 PRINT A;B:STRINGS
%140 PRINT “HELLQG, FRIEND"
> RUN
10 20
TI COMPUTER
HELLO FRIEND

#% DONE %

~NEW

»>100 N$="JORAN"
»110 M$=“HI"
»120 PRINT M§iN$

130 PRINT M$&" "&N$

5140 PRINT "HELLO “iN$
>RUN

HIJOAN

HI JOAN

HELLO JOAN

¥% DONE ¥%

+NEW

3100 LET f=10.2

-

e

»110 B=-30.5
»120 C=14.7

»130 PRINT A;B;C
»14Q0 PRINT A+tB

+RUN '
10-2 -30-5 16-
—2013
*% DONE &

Pagé'72

(FINAL DRAFT)

0319P Ti~-99/2 Book 4 BHS 1L Reterence LGuide AP LNHL LiKHE §)

PRINT

The PRINT statement displays numbers in either pacmal decimal form or
scientific potatiopy according to these rules:

l.

=

3.

All numbers with 10 or fewer digits are printed in normal decimal formw.

Integer numbers with wmore than 10 digits are printed in scientific
notation.

Non-integer numbers with more than 10 digits are printed in scilientific
notation only if they can be presented with more significant digits in
scientific notation than in normal decimal form. If printed in normal

decimal form, all digits beyond the tenth digit are omitted.

I1f numbers are printed in normal decimal form, the following conventions are
observed:

io! Integers are printed without deciwal points.

0! Non-integers are printed with decimal points in proper pasition.

Trailing zeros after the decimal point are omitted. If the number has

more than 10 digits, it is rounded to 10 digits.

ot A 0 (zero) is not pr]ﬂted by itself to the left of the decimal.

If numbers are printed in scientific notation, the format ias

mantissa £ expopnendt

and thg following rules apply:

lo! The mantissa is printed with six or fewer digits, with one digit to
the left of the decimal point.

" ip! Trailing zeros are omitted after the decimal point of the mantissa.

in! If there are more than five digits after the decimal point in the
mantissa, the fifth digit is rounded.

Ia! The exponent is a two-digit nunber displayed with a plus or minus sign.

tg! If you attempt to print a number with an expanent greater than 99 ar

less than ~-99, the computer prints ¥ following ‘the sign of the
exponent., ;

Page 73

0319P TI-99/2 Boowk

2PRINT -1077.1
-10 7.1

»*PRINT 93427485127
?.34277E410

»PRINT 1E-10
« 0000000001

}PRINT 1-EE“1G
1.26£~10

#PRINT 000000000246
2.46E-10

“PRINT 153-3
15 -3

~PRINT 3.3503-46.1
3.35 -44.1

»PRINT 791.123456789
791.1234548

»PRINT -12.7E-330.64
—-0127 I64

»PRINT .0000000001978531
1.97853E-10

+PRINT -98.77E21
- -9.877E422

SPRINT 736.400€E10
7. 364E+H12

*PRINT 12.36587E~15
1.2365%E-14

»PRINT 1.28E-93-43.6E12
. 1.258-09 -4.36E+13

»PRINT .76E126381E-115
7 6E1%% 8, 1E-#%

BASIC Reference Guide

Page 74

(FINAL DRAFT)

0319P YI-99./2 Book 4 BASIC Reference Guide (F INARL DRAF 1)

PRINT

Print_Separaiors

Each screen line used with the PRINT statement has 28 character positians
numbered from left to right (1 through 28). Each line is divided into two
14-character print zones. By using the print separators and the TAB function,
vou can control the position of the print itewms displayed an the screen.

There are three types of print separators: semicolons (%), colons (%), and
commas (,}. At least one print separator must be placed between adjacent
print items in the print-list. Multiple print separators may be used side by
side and are evaluated from left to right.

The semicolon print separator (3) causes the next print itewm to print
immediately after the previous item printed, with no extra spaces. In the

program on the right, the spaces after the numbers appear only because all
numberg are printed with a trailing space regardless of the type of print
separator used.

The colon print separator (%) causes the next print item to print at the
beginning of the next line. Each extra colon causes one blank line to appear;
the colon's function is similar to that of a typewriter carriage return.

The comma print separatar (,) causes the next print item to print at the
beginning of the next print zone. Print lines are divided into two zones.
The first zone begins in column 1 on-the screen and the second begins 1n
column 15. If the first print zone is already full when a comma print
separator is evaluated, the next print item begins on the next line.

Page 75

0319P TI-99/2 Book 4

~INEW

»100 A=-26
»110 B=-33
»120 Ce="HELLO"
»130 PRINT A;B;CS$
>+ RUN

-26 -33 HELLO

DONE ¥

=PRINT "A%*i:"B"
A :

~NEUW

%100 A=—-26
»110 B$="HELLQ"
»120 PRINT A:8%
»RUN

-26

HELLO

%% DONE %%

»NEW

>100 A$="ZONE 1"
»110 B$="ZONE 2"
»120 PRINT A$,8$

130 PRINT A$:,B$,RS
- FRUN -
ZONE 1 ZONE 2

ZONE 1

ZONE 2

ZONE 1

%% DONE **

e

BASIC Reference Guide

Page /6

(FTNAL DRAFT)

031?P_Ti-??f2, Book 4 BASIC Reterence Luide {F INAL DRAFT)
PRINT

188 _Eunction

The TAB function specifies the starting position on the print line for the
next print item. Note that the TAB function cannot be used with INTERNAL type
files. The format of the TAB function is:

TAB(puperig-2xpression)

The gumeric-expression is evaluated and rounded to the nearest integer g. If
p is less than 1, its value is replaced by l. If p is greater than 28y 0 1s
repeatedly reduced by 28 until 1 £ p £ 28. If the number of characters
already printed on the current line is less than or equal to pny the next print
item is printed on the same line beginning 1in position p. If the number of
characters already printed on the current line is greater than py the next
item is printed on the next line beginning in position D.

Note that the TAB function is a print itewm and thus must be preceded by a
print separator, except when it is the first item in the pripizlist. The
print separator before a TAB function is evaluated before the TARB functian,
and the print separator following the TAB function is evaluated after the TAB

function.

In the program on the right, the computer does the following: | .

o' line 120--prints A, moves to column 17, prints B.

io! line 130-——prints A, moves to the next print zone, prints B.

in!l line 140--prints A, moves to column 20, moves to the next print zone
because of the comma (in this case column 1 of the next screen line),
prints B, o o

ia! line 150--moves to column 5, prints A, moves to column 6 of the next
line (because column & of the current line was passed when Q was
printed), prints B.

o' line 140--prints A, subtracts 28 from 43 to begin the TAB function
within the allowable character positions, moves to position 15

(43-28=185), prints B.

Page 7/

0319P TI-99/2 Book 4 BASIC Reterence Guide

»NEW

»100 A=23.5
110 B=48.4
>120 MSG$="HELLO"
130 PRINT TAB{(S5);MSG$; TAB(33
) MSGS
»140 PRINT A;TAB(10)38
»150 PRINT TAB{(3);A;TAB(3);B
> RUN
HELLD
HELLO
23.5 " 48.6
23.5
48.6

%% DONE *¥
>NEW
>100 A=326
»>110 8=79
»120 PRINT A3TAB(17)38
. *130 PRINT 4,8
>140 PRINT A;TAB(20),B
150 PRINT TAB(S);A3TAB(4) 3B

»140 PRINT A;TAB(43);8
»RUN

326 7%
326 79
326
79

326
326 79
%% DONE ¥

Page 78 |

(F INRL ULRHFT)

0319P TI-99/2 Book 4 BASIC Reterence Uuide (FINAL DRAF ()
PRINT

A print item following a TAB 1is not split between two screen lines unless the
print item is a string with more than twenty-—-eight characters. In that case,
the string always begins on a new line. If a numeric print 1tewm can be

printed on the current line without its trailing space, the number is printed
an the current line. If the entire number itself will not fit on the current

line, it is printed on the next line.

The print-list may end with a print separator. If it does, the print
separator is evaluated and the first print item in the next PRINT statement
(line 160} starts in the position indicated by the print separator.

If the pript-list is not terminated by a print separator (line 130), the
computer considers the current line complete when all the print items are
printed. In this case the first print item in the next PRINT statement (line
'140) always begins on a new line.

You may use a PRINT statement with no pript-list. When such a PRINT statement
is performed, the computer advances to the first character position of the
next screen line. This has the effect of skipping a line if the preceding

PRINT statement does not end with a print separator.

Page ?9'

0319P TI-99/2 Book 4

+NEW

+100 A=23767

»110 B=79856

»120 C=A+B

»130 D=B-A

»140 PRINT A;B3;C3D

»150 PRINT “A="3Q;"8

;C;uﬁ=n;o
'+ RUN

BAS1L felerence bulde

B; "C="

23767 79856 103483 56087
A= 237&7 B= 79856 C= 103423

D= 56089
%% DONE **
ANEW

100 A=23
»110 B=597
%120 PRINT R,
3130 PRINT B
>140 PRINT A383
»150 C=448
»140 PRINT C
»RUN
23 597
23 597 468

%% DUNE 2.3
“NEW

+100 A=20
>110 PRINT A
»120 PRINT
»130 B8=18
»140 PRINT B
~RUN

20

S 1=

#% DONE %%

Page 80

WL LA v)

0319P T1I-99/2 Book 4 - BRSIC Reterence Guide (FINAL DRAF()
BUILT-IN NUMERIC FUNCTIONS

The numeric functions described in this section are built into TI-99/¢ BASIC
and perform some of the frequently used arithmetic operations. These
functions eliminate a large amount of programming necessary to obtain
equivalent results. _ .

The built-in functions that are used with strings are discussed in the
“Built~in String Functions" section. '

Page Bi

0319F TI-99/2 Book 4 BASIC Reference (Guide (FINAL DRAFT)

ABS—-Absolute Value

ABS (pumeric-expressiqn)

The ABSolute value function returns the absolute value of the argument. The |
argument is the value obtained when the qumeric-expressiqn is evaluated. The
normal rules for evaluating numeric expressions are used.

If the argument is positivey ABS returns the argument itself. If the argument
is negative, ABS returns the negative of the argument. Thus, for the argument
Xy “

'o! If X»=0, ABS(X)=X

lo! If X<0, ABS(X)=-X
(i.@.y ABS(~-3)=~(-3)=3

ATN--Arctangent

ATN (puoercic-expressian)

The arctangent function (ATN) returns the arctangent of the argument. The
argument is the value obtained when the oumeric-expressiop is evaluated. The
normal rules for evaluating numeric sexpressions are used.

ATNOO returns the angle (in radians) whose tangent is X. To express the
angle in degrees, multiply the answer by (180/(4*ATN(1))) or 57.295779513079,
which is 180/p1.

The value given for RTN is always between -pi/2 and pi/2.

Page LZ

0319P TI-99/2 Book 4 BASLL Reterence Uuide

~NEW

»100 A=-27.34

»110 B=9./

>»120 PRINT RABS{(A);ABS(8)
»130 PRINT ABS(3.8)3;ABS(-4.5)

~#140 PRINT ABS(-3%2:
»150 PRINT ABS(A*(B-3.2))
RUN

27.36 9.7

3.8 4.5

4

177.84

#% DONE **

NEW

»100 PRINT ATN(.44)
»110 PRINT ATN(1E12/7)
»120 PRINT ATN(1E-129)3ATNL(O)

130 PRINT ATN(.3)#57.2957795
13079
- »140 PRINT ATN(.3)%(180/(4%AT
C NG -

> RUN
.4145048744
1.570796327
0 0
16.69924423

16.69924423

F

.“*** DONE %¥

Page B3

W ANRL DRAE)

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

COS--Cosine

COS(pumeric-exprcessian)

The COSine function returns the cosine of the argument X, where X 135 an angie .
in radians. The argument is the value abtained when the pUmeCic-exprassiQn 1is
evaluated. The normal rules for evaluating numeric expressions are usad.

If the angle is in deqrees, multiply the degrees by pi/ 180 to find the
equivalent angle in radians. You may use (3#ATNC(1))Y/180 or 0.01745329251994
for pi/180. Note that if you enter a value of X where

10
X1 %=1 ,57079432646375%10 , the message BAD ARGUMENT is displayed and the
program stops running.

EXP-—Exponential

EXP{pumeric-exgression)

The EXPnnintial function returns the value of @ raised to the power of the

X
argument X (& , where @=2.718281828). The argument is the value obtained

when the pumeric-expressiop is evaluated. The normal rules for the evaluation
of numeric expressions are used. '

. EXP'is the inverse of the natural logaritim function (LOG). Thus,

X=EXP(LOG(X)).

Page 84

0319P T1-99/2 Book 4 BRSIC Reference Guide

~NEW

»100 A=1.0471975511%4
»110 B=60
»120 C=.01745329251994
»130 PRINT COS(Q)3COS(B*C)H
»140 PRINT COS{B¥*(4*QATN(1))/1
80)
>RUN
.5 .5
D

#% DONE *%
“PRINT COS(2.2E11)

* BAD ARGUMENT

~NEW

>100 A=3.79

»110 PRINT EXP(R)FEXP(9)

»120 PRINT EXP(A¥2}

»130 PRINT EXP(LOG(2))

>RUN ,
44.25640028 B103.083928
1958. 628965

-

#% DONE #%

Page 85

(FLNHL DRAE 1)

0319P TI-99/2 Book 4 BASIC Refgrence Guide ~ (FINAL DRAFT)

INT—-Integer

INT(numeric-expression)

The INTeger function returns the largest integer that is not greater than the
argument. The argument is the value abtai >d when the pumeric-exipressiop is
evaluated. The normmal rules for evaluating numeric expressions are used.

If yad specify an integer as the argument, the same integer is returned by INT.

For nonintegers, INT returns the integer closest on the number line to the
left of the specified number. Thus, for positive numbers, the decimal portion
is dropped; for negative numbers, the next smallest integer is used (1.e.,
INT("E-33="3) L

(number line graphic)

LOG—Natural lLogarithm

LOG (pumgric-expresaian)

The natural LOGarithm function returns the natural logarithm of the number
specified by the argument. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for the evaluation of

numeric expressions are used.

The natural logarithm of X is usually shown as log (x). LOG is the inverse
e

of the exponential function (EXP); thus, X=LOG(EXP(X)).

The argument of LOG must be greater than zero. If you specify a value less
than or equal to zero, the message BAD ARGUMENT is displayed, and the program

- stops running.

To find the logarithm of a number in anather base B, use the formula,

log (X)=log (X)/log (B)
B e e

Eor example, log (3)=log (3)/log (1Q)
w 10 e 2 >

Page 86

0319F TI-99/2 Book 4 BRSLL Reterence Guidé (FINRKL DREF 1)

~NEW

»100 B=,678

>110 A=INT(B%100+.5)/100
»120 PRINT A3 INT(B)

»>130 PRINT INT(=-2.3)5INT(2.2)

~RUN
68 0
-3 2

*% DONE #¥

NEW
»100 A=3.,5
>110 PRINT LOG(AR)3LOG(A¥2)
»120 PRINT LOG(EXP(2)?
»RUN
1.2527462968 1.945910149
c.

- %% DONE %%

#PRINT LOG(-3)
*BAD ARGUMENT

<PRINT LOG(3)/L0G(10) ; ﬁ
~ 4771212647 '

Page 87

0319P Ti-99/2 Book 9 BASIC Reference Guide (FINAL DRAFT)

RANDOMIZE

RANDOMIZE [seed)

The RﬁNﬁDHIZE gtatenent is used in conjunction with the random—number functinh
(RND). The sped may be any numeric expressi ‘.

If you use the RANDOMIZE statement with a seed specified, the sequence of
random numbers generated by RND depends upon the value of the seed. If the
same sepd is used each time the program is runy, the same sequence of numbers
is generated; 1f a different seed is used each time the program is runy a
dif ferent sequence of numbers is generated.

When the RANDOMIZE statement 15 used without a seed, & different and
unpredictable sequence of random numbers is generated by RND each time the

pProgram is run.

When the RANDOMIZE statement is not usedy, RMD generates the same sequence of
pseudo~random numbers each time a program is run,

The computer may generate the same sequence of numbers even if you specify
different numeric expressions for the segd. The number actually used for the
seed is the firet two bhytes of the internal representation of the number. For
example, the first two bytes of the internal representaticn of 1000 and 1099
are the same and thua they will produce the same seed, which will, in turn,
produce the same sequence of numbers. (See "fAccuracy Information®” in Appendix

XXX for more ipfarnatinn.)

Page 83-

0319P TI-99/2 Book 4 BASLC Reference Uuide (FINAL DRAHT)

~#INEW

»100 RANDOMIZE 23
=110 FOR K=1 TO §
120 PRINT INT(10%RND)+1
»130 NEXT K
=RUN
&
4
3
8
g

k% DONE %%

Page 89

{U\—Il* T i * * [A h hu‘-ﬂ'pﬁ 1 oosd o law PR Y e 4 a4 e © Ner ade %a -:'. L o wl e

RND—--Random Number

RND

The random—number function (RND} returns the next pseudo—random number in the
current seauence of pseudo-random numbers. The random number generated is

greater than or equal to zero and less than 1.

The same sequénce of random numbers is generated by RND every time the same
program is run unless the RANDOMIZE statement appears in the program.

' To obtain random integers from value A through valua B (where A<B), use this
formula:

INT((B~A+1)*RND)R

Page 20

0319F TI-99/2 Book 4

~NEW

=+100 FOR K=1 TO &
>110 RRINT RND
+120 NEXT K

RUN

BRSIC Reterence Luirde

LOXXXXX CHECK W/ SQUIRREL XXX

.4
.
4
e

%% DONE %%

»NEW

=100 FOR K=1 TO §
+110 C=INT(20%RND)+1
»120 PRINT C
»130 NEXT K
2 RUN

11

B ,

11

8
&

*¥% DONE W

Page 91

(FINRL DRAFY)

0319p TI-99/2 Book 4 BASIC Reterence Guide (FINAL DRAFT)
SGN--Signum (Sign)

SGN(numeric-exeressian)

The signum function (SGN) returns a value representing the algebraic sign of
the value specified by the argument. The argument is the value obtained when
the pumecic-exeression is evaluated. The normal rules for the evaluation of
numeric axpressions are used. |

SGN gives different values depending on the value of the argument; far the
argument X,

X409 SGN(X) =—~1
X=0 , SGN (X) =0

X:GpSGN(X =1

SIN~-Sine
SIN(pumeric-exeression)

" The SINe function returns the sine of the argument X, where X 15 4an angle .in
radians. The argument is the value obtained when the qumeric-expressiqn 1s
evaluated. The normal rules for evaluating numeric expressions are used.

If the angle is given in degrees, multiply the degrees by pi/180 to find the
equivalent angle in radians. You may use (4%#ATN¢1))/180 or 0.01745329251%744

.. for-pi/180. Note that if ybu enter a value of X, where
. 10 -
1Xt51.5707963266375%10 , the nessage BAD ARGUMENT is displayed, and the

program stops running.

Page ?é-

0319P TI-99/2 Book 4 BASIC Reterence Guide F INAL DRRF 1)

»NEW

2100 A=-23.7

»110 B=6

»120 PRINT SGNC(A);SGN(O)§SGN(
B)

»130Q PRINT SON(-3%¥3)3;SGN(B*2)

+RUN
-1 0 1
-1 1

%% DONE **

~NEW

2100 A=.5235987755982
»11Q0 8=30
>120 C=.01745329251994
>»130 PRINT SINCA);SIN(B¥*C)
»140 PRINT SIN(B*(4*AQTN(1))/1
80)
> RUN
B uB
5

%% DONE %%

»PRINT SIN(1.9E12)

% BAD ARGUMENT

Page 93

GulYF TL-vYY/2 .uuKk 4 Br... Kelerence Luide Ch AN a2
SQR—--Square Root

SQR(pumecic-expression)

The square root function (SGR) returns the positive sgquare root of the value
specified by the argument. The argument is the value obtained when the
pumeric-expressiqgo is evaluated. The normal rules for the evaluation of
numeric expressions are used.

SAR(X) is equivalent to X (1/2).

If the value specifiad by the argument is negative, the message BAD ARGUMENT
ig displayed, and the program stops running.

TAN—--Tangent

TAN(puneric-exprassion)

The TANgent function returns the tangent of the argument X, where X is an _
angle in radians. The argument is the value obtained when the |
pumeric-exeressign is evaluated. The normal rules for evaluating numeric
expressions are used.

If the angle is given in degrees, multiply the degrees by pi/180 to find the
- eguivalent angle in radians. You may use (4*ATN(1))/180 or 0.01745329251994
“for pi/Z180. Note that if ybu enter a value of X where

10
1X121,.8707963266375%10 , the message BARD ARGUMENT is displayed, and the

program stops running.

Page 94

Q319P TI1-99/2 Book 4 BRSIC Reference GQuide (FINAL DRAFT)

BUILI-IN STRING EUNCTIOQNS

String functions wmanipulate strings to produce either a numeric result or a
string result. As you use your computer, you will find many ways to use the
string functions described. Note that any string function with a name that
ends with a dollar sign (for example, CHRY) always returns a string result and
therefore cannat be used in numeric expressions.

Page 94

0319P TI-99/2 Book 4 BASIC Reterence Luide (FINAL DRAFT)

~NEW

»100 PRINT SQR{(4)347(1/2)
»110 PRINT SGR(10)
»RUN

2 &

3.16227766

%% DONE %%

»PRINT SQR(-8)

* BAD ARGUMENT

»NEW

#100 A=.7853981633973

»110 B=45

>120 C=.01745329251994

»130 PRINT TANCA);TAN(B*C)

»140 PRINT TAN(B®(4*QTN(1))/1
80)

»RUN

a -J: 1- 1-

1

#% DONE *%

~PRINT TAN(1.76E10)

% BAD ARGUMENT \

Page éS

0319P TI-99:2 bBook 4 BRS1(C Reterence uLutide W LNHL WDEHEE L)
ASC--ASCII Value

ASC (string-eseressian)

The ASCII value function (RSC) returns the ASCII character code corresponding
to the first character in the stiripa-expression. A list of the ASCII
character codes for each character in the standard character set is given in
the Appendix XX.

CHR$--Character

CHR$ (pumeric-expression’

The character function (CHRS) returns the character corresponding to the ASCII
character code specified in the argument. The argument is the value obtained
when the pumeric-gxpressiop is avaluated. The normal rules for the evaluation
of numeric expressions are used.

If the argument is not an integer, it is rounded to an integer.

an argument from 32 through 127 gives the standard ASCII character
corresponding to that value. Other values give the special graphics symbols.
Refer to Appendix XX for a list of the ASCII character codes and their -
assignad characters.

If a character code is not defined, the character given is whatever ig in
~ memory at that location at that time. Any argument that is outside the ASCII
" character code range is repeatedly reduced by 256 until it is less than 256,

An argument less than zero or greater than 32767 causes the message BAD VALUE
to be displayed, and the program.stops running.

Page 97

Q0319P TI-99/2 Book 4

*NEW

*+100
=110
~120
=+130
»140
+150
E")
+160
»170
»RUN
THE
THE
THE
- THE
H

A$="HELLO"

C$="JACK SPRAT"

B$="THE ASCII VALUE OF *
PRINT B$;"H IS"3ASC(AS)
PRINT B$;"J IS";ASC(CS)
PRINT B37"N IS";ASC("NAM

PRINT B$;"1 IS"FASC("1™)
PRINT CHR$(ARSC(RS))

ASCII VALUE OF K IS /2
RSCII VALUE OF J IS 74
ASCII VALUE OF N IS 78
RSCII VALUE OF 1 IS 49

%% DONE ¥

»NEW

+100

A$=CHR$(72)&CHRSF (73) &CHR

$(33)

»110
»120
»130
»RUN

HI'!
*

}

PRINT A$
PRINT CHR$(3%14)
PRINT CHR$C¢RSC(“$"))

#% DONE ¥

#PRINT CHR$(33010)

¥ BAD VALUE

Brblil, Reference Guide

Page 99

(FINAL DRAFT)

Q319P T1-99/2 Book 4 BABIL Kelerence uulde (FLNRAL URRKRF)
LEN-~Length

LEN(string-expression?

The LENgth function returns the number of characters in the string specified
by the argument. The argument is the string value obtained when the
siringa-expression is evaluated. The normal rules for the evaluation of string
expressions are used.

The length of a null string is zero. Bear in mind that a space is a character
and counts as part of the length.

POS—Position
POS(sirinal,siringd,pumeric-expressian)

The POSition function finds the first occurrence of stripa? within strinal.

Both siringl and siripag are string expressions. The pumeric-expressian is
evaluated and rounded, if necessary, to the nearest integer, N. The normal
rules for the evaluation of string expressions and numeric expressions are

used.
The search for siringe begins at the Nth character of stripal.

If sirinag is found, the character position within siringl of the first
character of siripgl is given.

If gsteinge is not found, 4 value of zéro is given.

The position of the first character in siripal is position one. If N is
greater than the number of characters in stripals a value of zero is given.
If N is less than zero, the message BAD VALUE is displayed, and the program

stops running.

e

Page 9?”,'

0319P T1-99/2 Book 4 BASIC Reterence Guide (FINAL DRAFT)

~NEW

»100 NAMIZ$="CATHY"
110 CITY$="NEW YORK"
»120 MSGE="HELLD "&"THERE'"
>130 PRINT NAMES;LEN(NAMES)
»140 PRINT CITY$SLENC(CITYS)
»150 PRINT MSG$;LEN(MSGS)
160 PRINT LEN(NAMES&CITYS)
#1700 PRINT LEN("HI'™)

=RUN

CATHY S

NEW YORK 8

HELLOD THERE! 12

13
3

~ #% DONE %+

NEW

=100 MSG$="HELLO THERE' HOW A
RE YOU?*

110 PRINT "H"3POS(MSG$,"H"y1
)

%120 C$="RE"

»130 PRINT C$;POS(MSGS,CP,1)3
POS(MSG$,CEs12)

140 PRINT "MI";POS(MSG$, "HI"
1)

»RUN
RE 10 19
HI O

% DONE ¥

Page 100

0319P TI-99/2 Book 4 BASIC Reterence Luide (FINAL DRAF1)

SEG$-—-String Segment

SEG${string-expressions nuneric-expressionloUBeCic-eXPressiond)

The string SEGment function returns a portion (gubstring) of the string

designated by the string-expcessicn. The normal rules for the evaluation of
numeric expressions and string expressions are used.

Nuperic-expressignl specifies the position of the character in the
string-expressign that is to be the firet character of the substring. The

position of the first character in the stripg-expressian is position one.
Numeric-sxpressiopd specifies the length of the substring.

In this example, A$ is siring—expressiqns X is oumecic-sxecessionds and Y is
puperic-expression2. If you specify either a value for X greater than the
length of A$ (line 110) or a value of zero for Y (line 120), the program

returns a null string. If you specify a value for Y greater than the
remaining length in A$ starting.at the position specified by X {line 130}, the

substring is the remainder of A$ from position X on.

-

1f X is less than or equal to zero or if ¥ is less than zero, the message BAD
VALUE is displayed, and the program stops running.

Page 101

0319P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

“NEW

=100 MSG$="HELLO THERE! HOW A
RE YOU?"

~110 REM SUBSTRING BEGINS IN
POSITION 14 AND HAS A LENGTH
OF 1i2.

»120 PRINT SEG$(MSG$,14,12)

+RUN

HOW ARE YOU?

%% DONE #%

k

>NEW
»100 MSG$="1 AM A COMPUTER."
»110 PRINT SEG$(MSGS,20,1)
»120 PRINT SEG$(MSG$,10,0)

»130 PRINT SEG$(MEGS,8,20)
>RUN

COMPUTER. ﬁ
%% DONE % |

“PRINT SEG$(MSGE,-1,10)

* BAD VALUE

Pay.: 102

0319PF T1-99/2 Book 4 BASIC Reterence vuirde (F INAL. DRAF §)
STR$--String—Number

STR$(pumeric-expression’

The STRing—number function returns the string representation of the number
specified by the argument. The argument is the value abtained when the
numeric-espressign is evaluated. The normal rules for the evaluation of
numeric expressions are used.

When the number is converted into a string, the string iz a valid
representation of a numeric constant with no leading or trailing spaces. For
example, if B=69.5, the STR$(B) is the string "&67.5%. Only string aoperations

may be performed on the strings created using STRY.

The STR$ is the inverse of the value function (VAL).

VAL —Value

VAL (giring-expression?

The VALue function returns the numeric constant that results when the
stripg-expression is converted to a number. For exanple, VAL converts the
string "469.5" to the numeric constant £9.5. The normal rules for the

evaluation of string expressions are used.

If the stripg-expression is not a valid representation of a number or 1f the
strina-~expression is of zero length, the wmessage BAD ARGUMENT is displayed and

the program stops running. If the siring-exeressiqn is longer th§n 255
characters, the message 8AD ARGUMENT is displayed and the program execution

stops.,

VAL is the inverse of the string-number function (STR§).

Page 103

0319P TI-99/2 Book .+ sRSIC Refe ence Guide

SNEW

+100 A=~26.3
%110 PRINT STRECAI;* “IR
»120 PRINT 15.73STR$(15.7)
+130 PRINT STR$(VAL("34.8"))
»RUN -

-26.3 -26.3

15.7 15.7
34.8

%% DONE *%

+NEW

+100 P$="23.46"
' »110 N§="-4,7"
»120 PRINT VAL (P$);VALINS)
»130 PRINT VAL("52"&".5")
»140 PRINT VAL (NSR"E“&"12%)
»150 PRINT STRE(VAL(PS))
»RUN |
23.6 -4.7
52.5
-4 . 7E+12
23.4

% DONE ¥

EggEIiOQ

(- LNAL ORAF)

0319P TI-99/2 Book 4 BASIC Reterence Uuide (F INAL DRAFT)

USER DEFINED FUNCTIONS

In addition to the built-in functions described in the two previous sections,
TI-99/2 BASIC enables vou to define your own functions to use within a
progran. User-defined functions can siwplify programming by avoiding repeated
use of complicated expressions. Once a function has been defined using the

DEF statement, it may be used anywhere in the program by referencing the name
you gave to the function.

Page 105

0319P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT)

DEF fupnction-pamel (pacameter)) = expression

The DEFine statement enables you to define vour own functions to use within a
program. The functign-pame may be any valid variable name} it is assigned the
value of the expressipop. If the pxpressign evaluates to a string, the
functiop-pame must be a string—-variable name (ane that ends with §).

The pacameier is used to pass information to the DEF statement. If a
parameter is specified, it must be a val: i “ariable name enclosed in
parentheses following the fupction—-name.

The £gnciinn:namﬁp like any variable or built-in function, can be uséd in
expressions. However, the fupctiopn-pame is assigned a value only when an
expression that contains funciiop-pame is =valuated.

When a functiopn-pane is defined in the DEF statement with no parameter, the
fupciion-pame is assigned the value of expression, using the current values of
the variables that appear in the gxpression.

When a fupctiop—name is defined in the DEF statement with a pacameter, an
argunment enclosed in parentheses must follow the function-pame. The pacameter
18 assigned the value of the argument. The expression is then evaluated using
the newly assigned value of the parcameter and the current values of any other
variables in the DEF statement.

The variable name used for a pacameter is local to the DEF statement in which
it i1s used. Therefaqre, if a variable in the program has the same name as a
parameier, the value of the variable is not affected when the parameter is
assigned the value of the argument.

When the computer encounters a DEF statement, it takes no action but proceeds
to the next statement.

A DEF statement may appear anywhere in a programs but it must be executed to
define a function before you can call that function. E

-

A DEF statement can reference other defined functions (line 170).

InLé bEF 5tatemen{, the Iuﬁ;iinn;namé”ﬁav not reference itself either directly
(e.g. DEF B=B¥*2) or indirectly (e.g, DEF F=G; DEF G=F).

The parameier cannot be an array name. You can uyse an array element in a DEF
statement 1if that element does not have the same name as the parameter.

Page 10646

0319P TI-99/2 Book 4 BASIC Reference Guide

“NEW

~100 DEF PI=4%QTN(1)
»110 PRINT COS(&60%P1/180)
+RUN

5

%% DONE %3¢

2100 REM EVALUATE Y=X*(X-3)
2110 DEF Y=X#(X-3)

~120 PRINT " X VYF

~130 FOR X=-2 TO &

2140 PRINT X3Y

»1850 NEXT X

X ¥

-2 10
-1 4
0 ¢
Y-,
2 -2
3 0
4 4

5 10

¥ DONE *%

ANEW -

2100 REM TAKE A NAME AND PRIN
T IT BACKWARDS

»>110 DEF BACKS$(X)=SEGS (NAMES,
Xy1)

>120 INPUT “NAME? "INAMES
>130 FOR J=LEN(NAMES$) TO 1 ST

EP -1

180 BNAMES=BNAMESABACKS(J)

»150 NEXT J

+»160 PRINT NAMES:BNAMED

»RUN

NAME? ROBOT
ROBAT
- TOBOR

J% DONE %%

Page 107

(FINAL DRAFT)

O319P TI-99/2 Book 4 BASIC Retference Guide

- NEW

=100 DEF FUNC(R)=A¥(AtB-5)
»110 A=6.9
+120 B=13
=130 PRINT *B="3Bi"FUNC(3)="}
FUNC(3)2“R="3A
SRUN
B= 13
FUNC(3)= 33
A= 6.7

% DONE #%

NEW

»100 REM FIND F'(X) USING NUM
ERICAL APPROXIMATION
»110 INPUT “X=? "IX
»120 IF ABS(X)>».01 THEN 150
»130 H=,00001
»140 GQTO 180
¥150 H=.001*ABS(X)
»160 DEF F(Z)=3%Z"3-2%Z+1
»>170 DEF DER(X)=(F (X{H) -F (X-H
>) /(2%H)
=180 PRINT "F'("3;STRI(X);")="
sDERCX)
> RUN
X=7? .1
F{.1)= -1,90999997

%% DONE #%

~NEW

+100 DEF GX(X)=GX{(2)*¥X
»110 PRINT GX(3)
- FRUN

* MEMORY FULL IN 110

~100 DEF GX(A)=A(3)"2
. RUN

* NAME CONFLICT IN 100

-+

n

~NEW

»100 DEF SQUARE(X)=X¥*X
»110 PRINT SQUARE
>+ RUN

* NAME CONFLICT IN 110
+100 DEF PI=3.1416

»110 PRINT PI(2
#RUN r

(FINAL DRAFT)

0326P T1-99.2 Book 4 BASIC Reference Guide (FINAL DRAFT)

ARRAYS

Arrays are collections of variables that are arranged for easy use in a
computer program. The most common use of an array is to store values that are
in a list; a one~dimensional array is used for a list. AR two—dimensional
array can be used to store the values of a table.

You can use arrays with one, two, or three dimensions in TI-99/2 BASIC.

Fach variable in the array is called an element. The size of an array 1s
limited only by the amount of memory available.

By using the array capabilities of TI-99/2 BASIC, you can do wmany useful
things such as printing the elements forward or backward, rearranging them,
adding them together, multiplying them, or processing selected elements.

b

Q324P TI-99/2 Baok 4 BASIC Reference Guide (FINAL DRAFT)

OPTION BASE [0 or 11

The OPTION BASE statewent enables vyou to set the lower limit of array
subscripts at 1 instead of 0. You can omit the OPTION BASE statewent if you

want the lower limit of the subscripts to be 0.

If you include an OPTION BASE statement in your program, you must give it a
lower line number than any DIMension statement or any reference to an element
in any array. You may have only one OPTION BARSE statement in a program, and

it applies to all array subscripts in your program. Therefore, vyou cannot
have one array substript beginning with 0 and another beginning with 1 in the

Same program.

If you use some integer other than 1 or ¢ in the OPTION BASE statement, the
computer stops the program and prints INCOPRECT STATEMENT.

0326P TI1-99/2 HBook 4 BHSIC Reterence uuide (FINRL DRAFT)

~NEW

»100 ORTION BASE 1
»110 DIM X(5,5,58)
»120 X(1,0,1)=3
130 PRINT X<1,0,1)
»RUN

¥ BAD SUBSCRIPT IN 120
»100 (Press ENIER to delete line 100.)

~RUN
3

*#% DONE W

0326P TI-99/2 Book 4 BASIC Reference Guide (FINRL DRAFT)

DIMension

OIM array-name (integerlil,integer2)(,inteqecd))(.accaz-pame . . .1

The DIMension statement reserves space for both numeric and string arrays.
Once used, an accay—name cannot appear in another DIM statement i1n the same
ProOgram.

A DIM statement is required for any array used in a program and must appear 1in
the program befare any other reference to the arrcax-pame. An drrcay-pame must
be a valid variable name. Multiple arccay-pames in a DIM statement must be
separated by commas.

You may use one—y two—-, Or three—dimensional arrays in TI-99/2 BARRSIC. The
number of integers in parentheses following the array-pame tells the computer
how many dimensions the array has.

A ane~dimensional array-pame is followed by one integer, which specifies
the number of values in the array.

i two-dinensional arrcay-pame is followed by two integers, which define the
number of rows and columns in the array.

A three-dimensional arcay-pname is followed by three integers, which define
the number of rowsy columns, and pages in the array.

Thl..lﬁr

'o! DIM R(4)—--describes a ane—-dinensional array
o! DIM A(1243)—describes a two-dimensional array
'o! DIM A(S,2,11)—describes a three-dimensional array

:
-

An array is allocated space after you enter the RUN command but before the
program is actually run. However, until vou place values in an arrayy each
element in a string array 1s a null string and each slement in a numeric array
has a value of zero.

. If:your computer gcannot reserve space for an array with the dimensions you

‘specify, a MEMORY FULL message is displayed, and your program will not run.

Q326P TI-99./2 HBook 4 BRSIC Reterence Dulide (FINRL DRAF1;

~DIM A(12),B(5)

~NEW

100 DIM X(15)
»110 FOR K=1 TO 15
»120 READ X(K)
+130 NEXT K
>140 REM PRINT LOOP
»150 FOR K=15 TO 1 STEP -1
21860 PRINT X(K);
#3170 NEXT K
>180 DATR 1,293y4:546,7:8,9+1
0y11,12413,14,415
»RUN -
15 14 13 12 13 10 ¢
. 8 7 6 5 4 3 2 1
¥4 DmE 3

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

DIM

subscripting_Ap. BCLay

To reference an array in a programs you must specify which element in the
array the computer is to use. You can specify the element by using a
subscript. Subscripts are enclosed in parentheses immediately following the
name of the array. A subscript must be a valid numeric expression that
evaluates to a non—-negative result. This result is rounded to the nearest

integer, if necessary.

The number of elements reserved for an array determines the maximum value of
each subscript for that array.

The example on the right assumes that the array begins with element 1 (CPTIODN
BASE 1 on line 120):

to! line 130--This line defines T as a one-dimensional array with 25
elemants.

o' line 160--The numeric variable I subscripts T. Whatever value I
contains at this time is used to point to an element of T. If I=3,
the third element of T is added.

ip! line 200--The subscript 14 tells the computer to print the fourteenth
element of T.

1o! line 220--The computer evaluates the numeric expression Nt2. If N=15
| at this time, the seventeenth element of T is printed.

If you access an arrav'uith a subscript areater than the maximum number of
elements defined for that array, or if a subscript has a 0 value and you have

used an OPTION BASE 1 statement, a BAD SUBSCRIPT message 1s displgyed, and the

program ernds.

0'326P TI-99/2 Book 4 BASIC Reterence Lulde

PNEW

»100 REM DEMO OF DIM AND SUBS
CRIPTS

110 S=100

»120 OPTION BASE 1
»130 DIM T(25)

»140 FOR K=1 TO 2%

#1850 READ T(K)
»160 A=S+T(K)

»170 PRINT Aj

180 NEXT K

»190 PRINT::

>200 PRINT T(14)
»210 INPUT "ENTER A NUMBER BE

TWEEN 1 AND 23:&“:

220 PRINT T(N{2)

»>230 DATA 12,13,43,85:85:76,7
8,98,54,34,23,21,100,333,222
»111,444,6566,543,234,89,765,
20,101,345

{12 113 143 145 165
174 178 198 156 134
123 121 200 433 32
211 544 764 643 334
189 865 190 201 445

333

ENTER & NUMBER BETWEEN 1 AND
23:14
111

g

%% DONE **

(FIddAL DRAFT)

S e s 1 I J-.= PR N S [T Wt T W . A mee [

SUBRQUIINE SIRTEMENIS

Subroutines may be thought of as separate, self-contained programs within a
main program. Subroutines perform tasks, such as printing information,
performing calculations, or reading valuaes into an array. Using a subroutine
enables you to type a set of statements only once and then access it (with a

GOSUB statement) at any point in the progranm.

0324P TI-99/2 Book 4 BRAYLC Reterence Luide (FINRL. DRAF 1)

GOSUB

GOSUB

lipe-punber
GO SUB

The GOSUB statement is used with the RETURN statement to branch to a
subroutine, perform the steps in the subroutine, and return to the next
program line following the GOSUB statement. When the computer performs the
GOSUB statement, it stores the next line mumber of the main program; the
computer returns to that point when it encounters a RETURN statement in the
subroutine. |

032&P TI-Y9/2 Bouok 4 wiw.w RElwiwnce Lulde LE Litk . Dbked 12

ANEW

»100 FOR X=1 TOQ 10

»110 GOSUB 150

=120 PRINT *X =“3;X3"S0O X IS "3jA$
+130 NEXT X

»+140 STOP

=150 IF X/2=INT(X/2) THEN 180
»160 A$="0DD"

+170 RETURN

>180 A$="EVEN"

#190 RETURN

+RUN
X =1.80 X IS ODD
X =2 S0 X IS EVEN
X =3 80 X IS 0D
X =4 S0 X IS EVEN
X =5 S0 X IS 0DD
X =4 S0 X IS EVEN
X =7 SD X IS 0DD
X =8 SO X IS EVEN
X =9 S0 X IS QDD
X =10 S0 X IS EVEN

%% DONE %

0326P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT)

Within a subroutiney, the computer can jump to another subroutine, perform 1it,
return to the first subroutine, finish its stepsy, and then return to the wmain
program at the point where the original branch occurred. GOSUB and RETURN
statements must be properly paired; be sure to exercise care in designing

subroutines so that the computer will not lose 1ts place.

In the example on the right, the main program jumps to subroutine 1 when 1t
reaches line 500. In subroutine 1, when the program reaches line 730, it
jumps to subroutine 2. When the RETURN in subroutine 2 is encountered (line
850), the computer returns to subroutine 1 at line 740, finishes the
subroutine, returns to the main programy and completes it through line 400,

If the GOSUB statewment transfers program control to & ling-pusber not in the
programs the program ends and the message BAD LINE NUMBER is displayed. If

the GOSUB transfers the program control to its own lipe-pumbers the progran

staps and the message MEMORY FULL is displayed

§
"

vocol 1YY/ /e HBook cadl Ketelence Uuldé

~NEW

»100 REM NESTED SUBROUTINES
~110 REM MAIN PROGRAM

« (Program lines . «)

~500 GAsU8 700
~51Q .

»&00 STOP
»700 REM SUBROUTINE1

~730 G0suUB 800
}740 L 3

3790 ﬁETURN
»800 REM SUBROUTINE2

»850 RETURN

=NEW

100 X=12
»110 Y=23

»12¢ GOSUB 120
»130 PRINT Z

»140 STOP

*180 REM SUBROUTINE
160 Z=X$Y%120/5
170 RETURN

- »RUN

* MEMORY FULL IN 120
»120 GOSUB 150

~+RUN

544

"H% DONE %#%

VP Lithe DKHE |)

0324P TI-9?/2 Book 4 BASIC Reterence Luide (FINRL DRAFT)

RETURN

The RETURN statement is used with the GOSUB statement to provide a
branch~and-return structure. When the computer encounters a RETURN statement,
it takes program control back to the program line immediately following the
GOSUB statement that transferred the computer to that particular subroutine.

Yau can develop programs with subroutines that jump ta gther subrautines and
back again, if you make sure that each GOSUB leads the computer to a RETURN

statenent.

If the computer encounters a RETURN statement before performing a GOSUB
instruction, the program stops, and the message CAN'T DO THART appears.

STOP
STOP

The STOP statement terminates the program that is running. STOP can be used
interchangeably with END. You can place one or mare STOP statements anywhere
in your program. Normally, the STOP statement is used when there are several
ending paints in a prosram and the END statement is used when there is only

one ending point.

PIS E — | T = o F e tem

+100 FOR K=1 TOQ 3
+110 GOSUB 150
+120 PRINT "K="3K
#130 NEXT K

~140 STOP

#1500 REM SUBROUTINE
+160 FOR X=1 TQ 2
+170 PRINT "X=%j
»180 NEXT X

#1900 RETURN

i
W Y = MO) = s)
N

*% DONE **

~NEW

100 A=5
»110 B$="TEXAS INSTRUMENTS"
»120 PRINT B$;A
»>130 STOP
»>RUN
TEXAS INSTRUMENTS S

% DONE %%

0324P TI-99/2 Book 4 HBASIU Reverence Luide (FiNRL. DRAFT)

ON GOSUB

GOSUB

ON pumeric-expression lipe-pumher [sline-pumhber] « « .
GO SuB

The ON GOSUB statement instructs the computer to perform a subroutine,
depending on the value of the pumecic-expressian. The computer first
evaluates the pumeric-expressign and converts the result to an integer,
rounding if necessary.

1p! If the integer is 1, the computer branches to the first
line-number listed in the ON-GOSUB statement.

'o! If the integer is 2, the computer branches to the second
line-number listed, and so on.

The computer saves the rumber of the line following the ON GOSUB statement and
returns to this point after performing the subroutine. The subroutine must
contain a RETURN statement to signal the computer to go back to the saved line
number and continue the program from that statement.

If the subroutine does not contain a RETURN statement, the program continues
as if a GOTO had been performed instead of a GOSUB.

If ‘the rounded value of the pumeric-expression is less than 1 or greater than
the number of line-oumbers in the ON GOSUB statement, the program stops, and

the message BAD VALUE IN lipe—pumber aspears. In the example, the original
Yine 130 transfers control to the END statewent if a 9 is input for COOE,

allowing the program to end without an error message. s

If a lipe-pumber in the ON GOSUB statement is not a valid program line, the
message BAD LINE NUMBER is displayed. -

(WINTu o] I S P « TP |

~NEW

+100 INPUT “CODE=?":CODE

=110 IF CODE=9? THEN 2%0
»120 INPUT “"HOURS=?" HOURS

I L TV IR

»130 ON CODE GOSuUB 170,200,223

0,260

140
+150
+140
=170
>180
»190
200
»210
220
+230
»240
~250
260
»a70
>80
290
> RUN

PAY=RATE *HOURS+BASEPAY
PRINT "PAY IS $“;PAY
GOTO 100

RATE=3.10

BASEPAY=5

RETURN

RATE=4.25

BASEPAY=25

RETURN

RATE=10

BASEPAY=50

RETURN

RATE=25

BASEPAY=100

RETURN

END

CODE=74
HOURS=?40

. PAY

IS $ 1100

CODE="72
HOURS=737

PAY

IS § 182.25

(ODE=73
HOURS=7356.75

PAY

IS § 407.5

CODE="71
HOURS=740

PAY

IS § 129

CODE=79

%% DONE W%

CORUN
CODE=75
HOURS=?40

¥ BAD VALUE IN 130

130 ON CODE GOSuB 170,200,23

04600

~RUN

CODE="74
HOURS=?40

* BAD LINE NUMBER IN 130

P A T S T S B S S S N TR S

032&4P TI-9Y9/2 Book 4 BRSIC Reference Uuide (FINAL DRrFT)

CILE_PROCESSING STATEMENIS

Your computer has the ability to store both programs and data on peripheral
(accessory) devices. You can later load and use these files with your
computer as often as you wish and delete them when you no longer need them.

With the file-processing capability of your computer, you can save important
information, create procedures to update data, and avoid retyping your
programs. TI-99/2 BASIC provides an extensive range of file-processing
features, including sequential and relative file organization and processing,
fixed and variable length records, and display and internal formats for data.

The connecting device between the Basic Computer 99/2 and the family of

™
HEX=BUS peripherals is the HEX-BUG interface that is built into the
computer itself. The HEX-BUS seripherals include the Texas Instruments

™
Wafertape Digital Tape Drive, the Printer/Plotter, and the RS232

Interface/Parallel Port. The computer identifies these peripherals by the
device numbers listed below.

Revice Revice MNumber
™
Wafertape Orive { ~-§
Printer/Plotter 10--17
 RS232 Interface 20~-27
Parallel Qutput Port | 50--51

}

iy

Other HEX-BUS peripherals will be available in the future. Check with your
dealer for a complete list of HEX-BLIS peripherals.

0326P TI-Y9/2 Book 4 BRGIC Reference (Guide (FINAL DRAFT)

OPEN

OPEN #file-npumber: °*HEXBUS.device-number.filspame® [(,Qeepn-nodel

"CS1"

[yfile-typel [,file-graanizationl [,cecord-typel (,filezlifel

The OPEN statement enables a BASIC program to process a file. OPEN assigns a
file-pumbher to a file on a peripheral, thereby sstablishing the link betwaen
that file and its file-pumber; this number is used by all Input/Output
statements that refer to the file.

'o! File-pumber--The file-pumber is a numeric expression that, when
evaluated and rounded, must be a number from 1 through 255. The

file—-numher nust be preceded by a number sign (#). Rll praogsrams that
access files must use the OPEN statement to assign a file-pumber to a
file or device.

File-punher 0 refers to the keyboard and screen of your computer and
is always accessible. You cannot open or close file-pumber O.

Each file in your program must have its own separate number. If a
file-punhar specifies a file that is already open, an error Qccurs.

Usipa_ihe OPEN Statement wiih HEX-BUS Peripberals

OPEN assaciates a file-number with the specified filepame on a peripherals
therefore, when an Input/Output statement uses a file-number, the computer
knows which file to access. Before a statement can use a file-pumbher to

access a file on a HEX=BUS peripheral, an OPEN statement wmust have first

assigned that file-oumber to the filepame.

The OPEN statement describes a file's characteristics so that your program can

create or process the file. The keyward HEXBUS must be included in any OPEN
™

statement that refers to HEX-BUS peripherals. When you open an existing

“file on a HEX-BUS peripheral, the computer checks to see if the file or device

characteristics match the information specified in the OPEN statement for that

file. If they do nat match, the file is not openad, and an 1/0 error wmessage

is displayed. If the computer cannot find a file that is to be opened in
INPUT mode, an 1/0 error message 1% displayed.

‘n! Device-pumher--The device-pumber is a number from 1 through 255 by
- which the computer identifies a peripheral. For example, 20 is the

- device~pumber for the RS232 Interfara peripheral.

‘0! Filepname——A filename supplies information to the peripheral device for
the OPEN statement. For exampley with an external storage device,
filepame specifies the name of the file. With other devices, the
filename specifies options such as parity, baud ratey etc. If you use
a string constant as a filepame, you must enclose it in quotation
‘marks.

Refer to the individual HEX-8US peripheral wmanuals for more information about
the dﬁylce—numhen and for specific information about the form of a filepame.

0326P T1-99/22 Book 4 BRSIC Reterence Luide (FIrAL DRAFT)

OPEN

XX 100 OPEN #2:"CS1",SEQUENTIAL
» INTERNAL y INPUT,FIXED 128,PL
RMANENT

XX Need examples for opening HEX-BUS reripherals.XX

~100 OPEN #25:"CS1",SEQUENTIR
L, INTERNAL INPUT , FIXED , PERMA
NENT

>110 X=100

»120 N=2

%130 OPEN #122:"CS"8STRE(N),S
EQUENTIAL, INTERNAL ,OUTPUT,FI
XEDy PERMANENT

0326P TI-99/2 Book 4 BASIC Reference Luide (FINAL DRAFT)

OPEN

The characteristics listed below may be In an? order or may be omitted. When
a characteristic is omitted, the computer azsumes standard characteristics
called defaults.

io!

'of

‘o!

gpeo-pade~-This entry specifies 1in which of the following modes the
computer is to process the file. If the gpen-mode is omitted, the
computer opens the file in UPDATE mode.

INPUT--The computer can only read from the file.
OUTPUT--The computer can only write to the file.

UPDATE-~-The computer can both read from and write to the file.

APPEND--The computer can write data only at the end of the filej the
records already on the file cannot be accessed.

file-type—This specification designates the format of the data staored
on the file. Data stored in ASCII characters (the kind displayed on
the screen) are called DISPLAY. Each DISPLAY record usually

corresponds to one print line.

Data stored in the internal machine format (binary code) are called
INTERNAL. The INTERNAL format is wore efficient for recording data on
mass storage devices; it requires less space and less processing time
because the computer performs fewer conversions between formats.

If the file-type is omitted, the computer assumes DISPLAY format.

file-araanization-—Files can be organized either saquentially or
randomly. Records on a SEQGUENTIAL file are read or writign one af ter
the other in sequence from beginning to end. Note that files on the

™
Wafertace peripheral must have SEQUENTIAL organization.

Random—access files (called RELATIVE in TI-99/2 BARSIC) can be read or
Written in any record order$ they can also be processed sequentially.

To indicate the organization of a file, specify either SEQUENTIAL or
RELATIVE in the OPEN statement. If file-oraapizaiion is omitted, the
computer assumes SEQUENTIAL organization.

You may optionally include the initial number of racords on a file by
following the word SEQUENTIAL or RELATIVE with a npumeric expression.

' ppcard=type~—This entry 5peci?iea whether the records on the file are

all the same length (FIXED) or vary in length (VARIABLE). The keyword
FIXED or VARIABLE may be followed by a numeric expression specifying
the maximum length of a record. The maximum length of a record varies

with the device used.

(VIETSE WY o Fd ¢ 2 i TS IVY N TR IV RN VI TS ST R T I V] = R T T T T SR

™

In the example on the right, the file MYFILE on device 1 (a Wafertape

drive) is orened as file number 4. Data can only be written to the file. If
the file does not already exist, the file is created with the characteristics
created in the OPEN statement. If the file already exists, the
characteristics of the file are compared with those given in the OPEN

statement.

XXXXThis example illustrates opening the file NAME$ on device 100 (that is
assumed to support relative files) with the file number 10. The file can anly

be read.

| FILEE.in this example is opened on device 1 as file number 12. Data can only
be written at the end of the file. The computer assumes SEQUENTIAL
organization and DISPLAY data format.

The file NAMES on device 1 in UPDATE mode with file number 53. If the fille
does not already exist, the file is created with the characteristics created

. in the OPEN statement. If the file already exists, the characteristics of the
file are compared with those given in the OPEN statement.

The file NAMES is opened an device 1 with the file number 11. The file can
be read only.

032&4P TI-99/2 Book 4 BASIC Reterence Luide (FINRL DRAFT)

100 OPEN #4:"HEXBUS.1.MYFILE
_":DUTFUT:INTERNQL

XXXX HEX-BUS perciphercals.do_poti _suppact relative files XXXX
120 OPEN $10:"MEXBUS.100.NA
MES", RELATIVE, INPUT, INTERNAL

»100 OPEN #12:"HEXBUS.1.FILE?
"yAPPEND,F IXED

»100 DPEN #53:"HEXBUS.1.NAME
$*,FIXED, INTERNAL

»100 OPEN #11:"HEXBUS.1.NAME
S$"» INPUT, INTERNAL , SEQUENTT
AL,VARIABLE 100

0326P TI-99/2 Book 4§ BRASIC Reference Guide (FINARL DRAFT)

Usipg..the QPEN Statemepi _witb_the 11 Proar w_Recorder_or_a Lompatitle Bacacder

ODPEN associates a file-pumher with the Program Recorder; it does not link
file-number with a specific file. You wmust locate that file on the device.
Refer to Book 1 for instructions on locating programs or data on an audio
cassette tape. Before a statement can use a file—-pnumber to access a cassette
device, an OPEN statement must have first associated that file-pumker with the
cassette device.

"CS1* must be included in the OPEN statement. The following characteristics
may be in any order, but certain of them are required.

lo! agpep—made (required)-—This entry specifies in which of the following
modes the computer is to process the file.

INPUT The computer can only read from the file.
QUTPUT The computer can only write to the file.

io! file—tvype (optional)--This specification designates the format of the
data or how the data are recorded on the file.

When data are stored in ASCII characters (the kind displayed on the
screen), the data format is called DISPLAY. A DISPLAY recard usually

corresponds to one print line.

When data are stored in the internal machine format (binary code), the
data format is called INTERNAL. INTERNAL format is more efficient for
recording data on mass—-storage devices; it requires less space and
less processing time because the computer performs fewer conversions

bhetween formats.

If the file-type is omitted, the computer assumes DISPLAY format.

0! file—oraanization (optional)--Files on a cassette recorder must have
SEQUENTIAL organization} this specification may be ommitied, because
the computer assumes SEQUENTIAL organization.

19! pecard-type (required)—-You must specify FIXED. This entry indicates
| that all the records on the file are the same length (FIXED). The
keyword FIXED may be followed by a numeric expression specifying the
maximum length of a record. You may specify any length up to 192
positions. If the length specification is omitted, the compuier

assumes a length of 64 positinns.

'o! file-life (optional)-—Files you create with your TI Computer are
" considered PERMONENT, not temporaryj if this entry is omitted, the
- computer assumes a PERMANENT fils-life. ’

0326P TI-99/2 Book 4 BRSIC Reference Guide (FINRL DRAFT)

HOPEN $75:"CS1%,0UTPUT, FIXED

The file located at the current position of the cassette tape is opened as
file number 75. Data can only be written to the file. The computer assumes a
SEQUENTIAL file in DISPLAY format with a FIXED length of 44 characters.

The file laocated at the current position of the cassette tape is opened as
file number 2. When the computer performs the OPEN statement, the
instructions for activating a cassette recorder device are displayed.

~+INEW

%100 OPEN #2:“CS1",INTERNAL,I
NPUT ,FIXED

. (Program lines . «)

>300 CLOSE #
~RUN

* REWIND CRSSETTE TAPE CS1
THEN PRESS ENTER

% PRESS CRSSETTE PLAY Cs1
THEN PRESS ENTER

. (Rest of program run,.)

* PRESS CASSETTE 8TOP Cs1 ' L
THEN PRESS ENTER |

¥% DONE *%

0326P TI-99/2 Book 4 BASIC Rererence (Guide (FINAL DRAFT)
INPUT

INPUT #file-pumber! .REC pumeric-expressionl(ivariabla-list]

(See also the "Input-Output Statements" section’

This form of the INPUT statement enables you to read data from a peripheral
device. The INPUT statement can be used only with files opened in INPUT or
UPDATE mode.

The file-pumber must be the file—pumber of A currently open file. (See the
OPEN statement.) Eile—-pumber O is the kevyhoard and may aluways be used. If
vyou use file-number O, the INPUT statement is performed as described in
“ITnput-Output Statements, " except that vyou cannot specify an input-prompt.

The za:iahla:liﬁi contains variables that are assigned values when the INPUT
statement is performed. Variable names in the variable-list are separated by
commas and may be numeric and/or string variables.

Filling the yariable-list

When the computer reads records from a file, it stores each complete record
internally in a temporary storage area callad an input/output (I/0) buffer. A
saparate buffer is provided for each open file-oumber. Values are assigned to
variables in the vaciahble-list from left to right, using the data in this
buffer. When a variable-list has been filled with corresponding walues, any
data items left in the buffer are discarded unless the INPUT statement ends

with a trailing comma, which creates a "pending"” input condition (see "Using
Pending Inputs").

If the variable-list is longer than the number of data items in the current
record being processed, the computer gets the next record from the file and

uses its data items to complete the variable:list, as shown on the right.

Y
Ty

0324P TI-99/2 Book 4 BASIC Reference Luide (FINAL DRAFT)

»NEW

+100 OPEN #13:°CS1Y,SEQUENTIA
Lo DISPLAY, INPUT,F IXED

110 INPUT #13:R,8,C3,08, XY,
Z$

»120 IF A=99 THEN 150

»130 PRINT A;B:C$:06,X,Y:Z$

»140 GOTO 110

»150 CLOSE #13
+RUN

(The data stored on tape are printed on the screen.’

%% DONE %

ANEW

»100 OPEN #13:“CS1",SEQUENTIA

LyDISPLAY, INPUT (F IXED 64
»110 INPUT $#13:A,8,C,D

« (Program lines ... o)

300 CLOSE $13
*RUN

(First INPUT RECORD=22,77,56,%2.

Resultsi)
RA=e2 B=/7 (=54 D=92

%% DONE %%
>NEW

>100 OPEN $13:“CS1*,SEQUENTIA
. L,DISPLAY,INPUT,FIXED 44
»110 INPUT #13:R,8,C D,E,F,G

~CLOSE #13

~RUN

(1st INPUT RECORD=22,33.5
end INPUT RECORD=405,9¢
3rd INPUT RECORD=22,11023
Qth INPUT RECORD=99,100

RESULTSE)

R=c2 B=33.5 C=405 D=9¢c
E=22 F=11023 G=99

#% DONE *%

Vad et | L "%7T:s Livkoin . N B 8 T AR W TU R Y L (UREE o NI Y R TR

INPUT

The computer interprets DISPLAY and INTERMAL data differently.

DISPLAY data have the same form as data entered f m the keyboard. The
computer knows the length of each data item in a LISPLAY record by the comma

separators placed between items. Leading and trailing spacds are ignored
unless they are enclosed in quotation marks in a string value. When the

computer encounters two adjacent commasy, a null string is assiqgned to the
variable.

Each value is checked to ensure that numeric values are placed in numeric
variables, as shown on the right in Record 1. If the value (as in Record 2 oOn
the right, JB) is not a numeric value, an INPUT ERROR occurs and the program

stops.

INTERNAL data have the foll..wing form:

Numeric Itewms: (insert graphic on page 1I-126)
designates length of item (always 8) value of 1tem

Strinos Items- (insert graphic on page I1I-126)
designates length of 1tenm value of 1tewm

The computer determines the length of each INTERNAL data item by interprating
the one~-position length indicator at the beginning of each item. . .

Limited validation of INTERNAL data items is performed. All nuweric 1tems
must be 9 positions long (8 digits plus one position that specifies the
length} and must be valid representations of floating-point numbers.
Otherwise, an INPUT ERROR occurs, and the program stops.

" For FIXED-length INTERNAL records, reading beyond the actual data recorded in
each record causes padding characters (binary zeros) to be read. If you
attempt to assign these characters to a numeric variable, an INPUT ERROR

occurs. If strings are being ready, a null string is assigned to the string
variable.

03246P TI-99/2 Book 4 BASIC Reference Luirde (F IRl GRAFT)

NEW

»100 OPEN #13:"“CS1"SERQUENTIAL
yDISPLAY, INPUT,FIXED 64

»110 INPUT #13:A,8,5TATES,DS,
XsY

(INPUT RECORD 1 = 22,97.6,TEXAS, "RUTD LICENSE",22000,-.07

INPUT RECORD 2 = JG,22, TEXRS,PROPERTY TRX,42,15)

Q32&6P TI-99/2 book 4 BlRnIL Reterence Lulde (FINAL DRAFT)

INPUT

Usipa INPUT. wiib RELAIIVE Eiles

(See the OPEN statement for a description of RELATIVF file-organization.)

You can read RELATIVE files either sequentially or randomly. The computer
sets up an internal counter that indicates the record that is to be processed
next. The first record in a file is record 0. Thus, the counter begins at
zero and is incremented by 1 after svery access to the file (whether that
access reads or writes a record). In the example on the right, the statements
direct the computer to read the file sequentially.

The internal counter can be changed by using the REC clause. The
puseric-expressiaon following the keyword REC is evaluated to designate a
specific record nunber on the file. When the computer performs an INPUT
statement with a REC clause, it reads the specified record from the designated
file and places it in the I/0 buffer. The REC clause can appear only 1in
statements referencing RELATIVE files. The example on the right illustrates
accessing a RELATIVE file randomly; using the REC clause.

If vou read and write recards on the same file within a program, be sure {0
use the REC clause. The same internal counter is incremented when records are
aither read from or written to the same file; you wmay skip some records and
write over others if REC is not used, as zhown in the example on the right.

If the internal counter indicates a recard heyond the limits of the file that
the computer tries to access, the program stops, and an INPUT ERROR message

appearﬁ .

0326P TI-99/2 Book 4 BASIC Reterence Luide

NEW

»100 OPEN #4:"HEXBUS.1.NAME
$", INTERNAL , INPUT,FIXED 44

110 INPUT #4:R,B,C$,0$,X

- (Program lines » .)

~200 CLOSE #4

SNEW

»100 OPEN #6:"HEXBUS.1.NAMES
", INTERNAL ,UPDATE,FIXED 72

»110 INPUT K

»120 INPUT #6,REC K:R,B,C$,D$

-~ (Program lines . . .)

#300 CLOSE #6

~NEW

»100 OPEN #3:"HEXBUS.1.NAMES
“ o INTERNAL ,UPDARTE,FIXED

»110 FOR K=1 TO 10

>120 INPUT #3:A%,83,C8,X,Y

. (Program lines . . .)

230 PRINT #3:R$,B$,C8$:X,Y
»240 PRINT NEXT K |
»250 CLOSE 43

(LINE 120--Reads records 0,2,4,698...

LINE 230—-Writes records 1,3,5979%P.aa)

(FINAL. DRAFT)

' pumeric expressions are used.

Vol b L=YY/ ¢ BOUK 4 L. o Rl el wiler LY LU V1At e PN G

INPUT

Usipna_Pendina_Inputs

A pending input condition occurs when an INPUT statement ends with a trailing
comma. When the computer encounters the next INPUT statement using that file,
one of the following actions occurs:

If the next INPUT statement has no REC clausey the computer uses the
data in the 1/0 buffer beginning where the previous INPUT statement
stopped.

If the next INPUT statement includes a REC clause, the computer
terminates the pending input condition and reads the specified record
into the file's 1/0} huffer.

If you use a pending input with file-pumber O, the error message INCORRECT
STATEMENT is displayed, and the program stoes running.

a

ECF--End-of-file

EOF (file-pumher’

k

In sequential processing, the End-Of-File function (EOF ! can be used to .
determine whether vyou have reached the end of a file. If you attempt to read
past the end of a file, an error occurs.

iy

The file-pumber is a mnumeric-expression that evaluates to the number used in
. the OPEN statement to open that file. The normal rules for the evaluation of

"]

The EOF function can be used in an IF THEN statement before an INPUT statement
reads that file. The EOF function is used ta determine if any data remain in
the file. The value returned by EOF depends on the position of the file.

Value Position

- 0 Not end-of-file :
$1 Logical end-of-file ,
-1 Physical end-of-file

A file is positioned at the logical end-of~-file when all records on the file
have been accessed. A file is positioned at a physical end-of-file when no
pore space is available for the file.

03246F TI-99/2 Book 4 BASILC Reterence Luide

#INEW

+100 INPUT #0:A,B,
»110 PRINT A3B
»120 GOTO 100
~RUN

n"

% INCORRECT STATEMENT
IN 100

W

»100 OPEN #5:"HEXBUS.1.NAMES
Y SSEQUENTIAL y INTERNAL » INPUT
o FIXED

»110 IF EOF(5) THEN 150

»120 INPUT #5:A,8

>130 PRINT A;B

>»>140 GOTO 110

+150 CLOSE #5

(FINRL DRAFT)

U‘H.Lﬂ—ui l A -, 4

INPUT

The EOF function cannot be used with RELATIVE files or with some peripheral
devices (cassette recorders). In these casesy you can create your own method

for determining if the end~of-file has been reached.

One common end-of-file technique is to create a last record on the file that
zserves as an end-of-file indicator. This is called a "dummy" record because
the data it contains are used only to mark the end of the file. For example,

it could be filled with 9's. When the computer inputs a recordy you can check
if the recard is equal to 9's. If so, the computer has reached the end of the

file and can skip to a closing routine.

The f§rst example on the right creates a dummy record. In the next example,
the computer checks for the dummy record as its end-of-file technique.

0326P TI-99/2 Book 4 BASIC Reference Gulide (FINAL DRARFT)

“NEW

100 OPEN #2:"CS1%,SEQUENTIA
L,FIXED,OUTPUT , INTERNAL

»110 READ A,B,C

»120 IF RA=999999 THEN 180

3130 E=A1B+C

»140 PRINT A3;B;C3E

150 PRINT #2:2Q,8,CE

»160 GOTO 110

+170 DATA 5,10,15,10,20,30,10
0,200,300,99,99,9%»

»180 PRINT $#2:999999,999999,999999,799999
»190 CLOSE #2

+RUN

REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE RECORD CSi
THEN PRESS ENTER

5 10 15 30
10 20 30 40
100 200 300 &00

 %PRESS CASSETTE STOP
THEN PRESS ENTER

4

%% DONE W%

~NEW

100 OPEN #1:"CS1", INTERNAL, I
NPUT ,FIXED
»110 INPUT #1:A,8,C,E
3120 IF A=99 THEN 160
130 F=A%E -
+140 PRINT A;B;C3E;F
»150 GOTO 110
+160 CLOSE #1
> RUN

* REWIND CASSETTE TAPE €51
* THEN PRESS ENTER

* PRESS CASSETTE PLAY (51
THEN PRESS ENTER
5 10 1§ 30 150
10 20 30 &0 6400
100 200 300 600 &000

%PRESS CRSSETTE STOP CS1
THEN PRESS ENTER
#% DONE ¢

udgealP 11-9Y9/2 Bous 4 HHOLL Keterence hu10€1 VP LidHL. WM 1)
PRINT

PRINT #file-pumbec!,REC pumeric-expressionl{iecinizlisi]

(For a description of the PRINT format for printing on the screen, see the
"ITnput-Output Statements" section.)

This form of the PRINT statement enables you to write data to a peripheral
device. The PRINT statement can be used to write only to files opened in
OUTPUT, UPDARTE, or APPEND mode.

The file-pumber must be the file—number of a currently open file. GSee the
OPEN statement.

When the computer performs a PRINT statement, it stores the data in a
temporary storage area called an input/output (I/0) buffer. A separate buffer
is provided for each open file-oumber. If the PRINT statement does nat end
with a print-separator (comma, semicolon, ar colon), the record is immediately
Written to the file from the I/0 buffer. If the PRINT statement ends with a
erint-separator, the data are retained in the buffer and a “pending® print
condition occurs (see "Using Pending Prints" in this sectian.)

Usina PRINI_witb INIERNAL Data

The prini-list consists of numeric and string expressions separated by commas,
colons, or semicolons. All print separators in a pcipnizlist have the same
effect with INTERNAL dataj; they only separate the items from eachiather and do
not indicate spacing or character positions 1n a record.

0324P TI-99/2 Hook 4 BASIC Reference Cuide

~NEW

=100 OPEN #5:"CS1",SEQUENTIAL
s INTERNAL , OUTPUT,,FIXED
. (Program lines . . .)

%170 PRINT #5:R,8B,C$,D$

« (Program lines . .)

~200 CLOSE #5

+NEW

»100 OPEN #6:"CS1",SEQUENTIAL
yDISPLAY,0UTPUT,FIXED

. (Program lines . .+)

%170 PRINT #4:AQ3",";8;"y"3CP3
“, 308

. (Program lines . . .2

~200 CLOSE %6

(FInNGAL. DRAFT)

"I-n"\-.i-..LJl L) r-) ' Lass . L] ! - Loy b i - . .

PRINT

The pript-list items written to a peripheral mass—storage device in INTERNAL
format have the following characteristics:

Numeric Items: (insert the graphic on page II-132)

designates length of item (always 8) value of 1tem
Siringa Itens: (insert the graphic on page I1-132)

designates length of 1tem value of 1item

In the axample on the right, the total length of the data recarded in INTERNAL
format is 71 positions. Each numeric variable uses 9 positions. A$ (line 110)
is 18 characters long plus 1 position to record the length of the string. 89

(line 1202 is 15 characters plus 1, If the values of A% and B$ change during

the program, their lengths written to the file are the values present when the
record is written,

When desianing your recordsy study the data each variable might contains and
plan your records to allow for the greatest length possible.

For FIXED-length records, the computer pads =2ach INTERNAL record with binary
zeros, when necessary, to make each record the specified length.

A record cannot be longer than the length specified in the OPEN statement (oc
the default length for the device when the recard length has not been
specified in the OPEN statement). If the data in a print-list exceed the
record length, the program stops, and the message FILE ERROR IN line-nuwmber
appears.

0324P TI-99/2 Hook 4 BASIC Reterence Luide (FINAL DRRF 1)

ANEW

%100 OPEN #5:“CS1i",SEQUENTIAL
» INTERNAL , OUTPUT,FIXED 128

»110 A$="TEXAS INSTRUHENTS“

»120 B$="COMPUTER"

»130 READ XyYyZ

»140 IF X=99 THEN 190

150 A=X¥Y*Z

1460 PRINT #5:A$,X,Y»ZyB3,R

»>170 6010 130

»180 DATA S965791,2,3,10,20,3

*p0,20y40r6011-5:2-3,7.6;99;?’9
99

>190 CLOSE #5

+RUN

*REWIND CASSEYTE TAPE CS1
THEN PRESS ENTER

*¥PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

(Data written on tape.)?

*PRESS CASSETTE STOP CSI
“THEN PRESS ENTER
%% DONE %

PRINT

Usina_PRINI_with RISPLAY Rata

Al thouagh it is best to store INTERNAL data on mass storage devicesy, you may
occasionally need to use DISPLAY data. There are several important
considerations you must observe when using DISPLAY format.

XX ? print—-list of screen and how records are set up——are not discussed hera??
and are they the same?? Also check that how records are set up is included in

Records are created according to the specifications found in the PRINT
statement of the "Input--Output Statements” section.

If a data item from the prini-list causes the record to be longer than
the specified record length (or the default length), the item is written
as the first item in the next record. If any single item is langer than
the record length, the item itself is split into as many records as are
required to store it. Normally, the program continues running and no
warning is given,

The computer can read DISPLAY data only if they are in the same format
as data entered from the keyboard. When you write a record to a file
that the computer will later read, you wmust explicitly include the comma
separatars and quotation marks needed by the INPUT statement. These
punctuation marks are not automatically inserted when the PRINT
statement is performed. They must be included as items in the
print-list, as shown in line 170 on the right.

Numeric items do not have a fixed length. The length of a numeric 1item
is the same as if it were displayed on the screen by the PRINT ar
DISPLAY statement (i. e., includes sign, decimal point, exponent,

o7 trailing spacey etc.). For example, the number of positions required to

print 1.35-10 is ten.

0326P TI-99/2 Book 4 BASIC Retference LQuide (FINAL. DRAFT)

NEW

»100 OPEN #10:*CS1“,SEGUENTIA
L,DISPLAY,OUTPUT,FIXED 128

'« Program lines

>170 PRINT #103""""jA$3""",";
x;",“iY;“,';2:“,'"';%;"“,"
H s
y

. program lines

»300 CLOSE #10

0326P TI-99/2 Book 4 BASIC Reference Guide (FIMNAL. DRAFT)

PRINT

Using_PRINI with RELAIIVE. Eiles

(See the OPEN statement for a description of RELATIVE file-organization.)

RELATIVE file records can be processed randomly or in sequence. The internal
counter points tao the next record to be pracessed. The first record in a file
is recard 0. Thus, the counter begins at zero and is incremented by +1 after
each file access (whether the access read or writes a record). In the example
on the right, the PRINT statement directs the computer to write the file
saquentially. Note that the file can later be processed either randomly or in
sequence.

The internal counter can be changed by using the REC clause. The keyword REC
must he followed by a pumeric-expressiop whose valua specifies the position to
which the record is to be written. When the computer performs a PRINT
statement with a REC clause, it begins building an output record in the 1/0
buffer. When this record is written to the file, it is placed at the location
specified by REC. You may use the REC option only with RELATIVE files.

The example on the right illustrates writing records randomly.

Be sure to use the REC clause if you read and write records on thé same file
within a program. The same internal counter is incremented when records are
aither read from or written to the same file} if REC is not used, you could
skip some records and write over others, as shown in the example on the right.

~ Nate that files written on cassette tape musi be accessad in sequential order.

0326P T11-99/2 Book 4 BASIC Reterence Guide

»NEW

100 OPEN #3:"HEXBUS.1.NAMES"
» RELATIVE, INTERNAL ,OUTPUT,F1
XED 128

. {(Program lines . . .)

»150 PRINT #3:A%,B3,C$)X,Y,Z

. (Program lines . . .}

+200 CLOSE $3
»NEW

»100 OPEN #33"HEXBUS.1.NAMES"
, RELATIVE, INTERNAL ,UPDATE,F I
XED 128

5110 INPUT K

+120 PRINT #3,REC K:A$,B$,C$,

XyVYsZ

-~ (Program lines . . .}

+300 CLOSE €3

*NEW

»100 OPEN #3: *HEXBUS.1.MAMES"
» RELATIVE, INTERNAL ,UPDATE,F 1
XED

»110 FOR K=1 TO 10

- »120 INPUT #3:A$,B$,C$XsY

5180 PRINT #3:A$:8%,C8,X,Y"

»140 NEXT K
190 CLOSE #3

(LINE 120 reads records 0,2,4,6,8

LINE 130 writes records 153,547,%)

-

(FINAL DKRAKT)

03224P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAt+ T)
PRINT

Usipa_Pepdioa_Prints

XX ¥% are prints discussed earlier?? Do we need thi first sentence??

A record iz written to a file when the computer perfnﬁms a PRINT statement
that does not end with ‘a trailing separator.

A pending print occurs when a PRINT statement ends with a trailing print
separator. When the next PRINT statement using the file is encountered, one

of the following actions occurs.

lg! 1f the next PRINT statement has no REC clause, the computer places
the data in the I/0 buffer immediately following the data already
there,

o! If the next PRINT staiement has a REC clause, the computer writes

the pending print record to the file at the position indicated by
the internal counter and (¥¥¥¥gr writes the record at the position
specified by RECH¥#®) perfarms the new PRINT statement as usual.

If a pending print condition exists and an INPUT statement for the same file
is encountered, the pending print record 1is weitten to the file at the
position indicated by the internal counter, and the internal counter 1is
incremented. The INPUT statement is then performed. If a pending print
condition exists and a CLOSE or RESTORE statement accesses the filey the
pending print record is written before the file is closed or restored.

0326FP TI-99/2 Book 4 BRSIC Referance LULde FINAL UReF)

CLOSE
CLOSE #file-pumberf :DELETE]

The CLOSE statement closes or discontinues the association between a file and
a program. fAfter the CLOSE statement is performed, the closed file cannot be
accessed by your program because the computer no longer associates the file
with the file-number vou specified. You can then reassign that particular
file~pumber to any file.

The DELETE option can be used on only certain peripherals. Refer to the
paripheral mamuals faor information on using the DELETE option in a CLOSE
statement.

If you attempt to CLOSE a file that is not open, the computer stops the
program and displays a FILE ERROR message.

To protect your files, the computer automatically closes any open files when

it finds an error that stops a program. When the BREGK command or the BREBK

or CLEABR key causes a breakpaint in a program, all open files are closed qnly
if one of the following occurss

‘o! you edit the program

lo! you leave TI1-99/2 BASIC with the BYE command
io! you run the program again

‘o! you enter a NEW command

If you use the QUIT command to leave your program, the computer will NOT close
any open files, and you could lose the data on these files. To exit before
the normal end of a program that uses files, follow these directions to
protect your files: * -

o' Press CLEAR until the computer displays BRERKPOINT AT
lipe-pupbhec. <(This may take several seconds.’

In! Enter BYE when the cursor reappears on the screen.

L | [£ L]
Uddﬂgl‘} I 4 -J: ‘3"! Lo iy ‘ . d L% el R URRRN I L

XX REWRITE PROGRAM~—2 CASSETTE RECORDERS ARE UGED HERE XX
+NEW

~100 OPEN #6:"CS1%,SEQUENTIAL
s INTERNAL , INPUT, FIXED

=110 OPEN #25:"CS2",SEQUENTIA
Ly INTERNAL ,OUTPUT ,F IXED

. (Program lines . « !

~200 CLOSE #46:DELETE
»210 CLOSE #25

0326F T1-99.2 Hook 4 BHSIC Reference Luide (F LNAL UKHE 1)

CLOSE
Lassetie Recorder Ipformation

When the computer performs the'CLOSE statement for a cassette tape device, the
screen displays instructions for operating the recorder, as shown on the right.

If you use the DELETE option with cassette recorders, no action beyﬁnd the
closing of the file takes place.

VIRTAE WM I R S WEWENT SR W R

+ NEW

»100 OPEN #19:"CS1", INTERMAL ,
OUTPUT,,FIXED

« (Program lines

210 CLOSE #19
+RUN

* REWIND CASSETTE TAPE C51
THEN PRESS ENTER

¥ PRESS CASSETTE PLAY (Sl
THEN PRESS ENTER

« (Program runs . . .J

% PRESS CASSETTE STOP CS1
THEN PRESS ENTER

#% DONE *%

D

PR LT, oy Tt i ”

T T R] S W LN I T R

03246P TI-99/2 Book 4 BRSIC Reference Uuide (FINKL DRAFT)

RESTORE

RESTORE #fils-pumber(,REC nuneric-expressian)

The RESTORE statement repositions an open file to its beginning record (see
the first example on the right) or at a specific record 1if the file is a

RELATIVE one (see the second example on the right).

If the file-pumber specified in a RESTORE statement is not already npen. the
program stops, and the message FILE ERROR IN line-pumher appears.

You may use the REC option only with a RELATIVE file. The computer evaluates

the puperic-expressicagn following REC and uses the value as a pointer to a
specific record on the file. If you restore a RELATIVE file and do not use

the REC option, the file is set to record O,

If there is a pending print record, the record is written to the file before
the RESTORE is perforwmed. If there is pending INPUT, the data in the I/0

buffer are discarded.

O326P TI-99/2 Book 4 BASIC Reference Gulide

“NEW

100 OPEN #2:"CS1",SEQUENTIAL
, INTERNAL y INPUT,FIXED &4
»110 INPUT #2:A,B,C$,08,X

. (Program lines . . .)

»400 RESTORE #2
=410 INPUT #2:8,B8,C%,0%,X

. (Program lines « « 7

~500 CLOSE #2

NEW ﬁ

~100 OPEN #4: "HEXBUS.1.NAMES"
INTERNAL, UPDATE,FIXED 128
110 INPUT #4:4,8,C

. {Program lines . . .)

»200 PRINT #4:A,8,C

. (Program lines . .« .}

- »300 RESTORE #4,REC 10
»310 INPUT #4:A,8,C

. (Program lines . . .)

+400 CLOSE #4

(FINAL DRAFT)

0326P TI-99/2 Hook 4 BRSIC Reterence ULuide (F INAL. DRAF)

SUBPROGRANMS

A subprogram is a predefined sequence of instructions built into BRSIC to
perform special tasks. Subprograms are accessed in a program line by the
keyword CALL followed by the subprogram name. Subprograms can also be
accessed in a command.

Information can be passed to a subprogram for it to use and, in return, the
subprogram can return information. This information 13 passed to and received

from a subprogram through constants, variables, and/or expressions that are
called parameters. Parameters are included in parentheses after the name of

the gsubprogran.

An example of accessing the subprogram HCHAR from a program 1s shown below.

10 CALL HCHAR(12,14,5,1)

HCHAR Ean also be accessed from a command by deleting the line number.

0324P TI-99/2 Baok 4 BASIC Referein.e Buide (FINAL DReid 1)

CLERR subprogram

CALL CLEAR

The CLEAR subprogram is used to clear (erase) the entire screen. When the
CLEAR subprogram is calledy the space character (code 32) is placed in all

positions on the screen.

When the program on the right runs,y the screen is cleared before the computer
performs the PRINT statements.

0324P TI-99/2 Book 4 BASIC Reference Luide (FINRL DRAFT)

FPRINT “HELLO THERE!™
HELLO THERE'
»CALL CLEAR

(The screen clears.)

~NEW

»100 CALL CLEAR

»110 PRINT "HELLO THERE'"
»120 PRINT "HOW ARE YOU?*
+RUN

(The screen clears.)

HELLD THERE!
HOW ARE YOU?

%% DONE **

U'l.-.-lh_-url l P | N -l‘l F) | Y— w - b "1 [e mek L ke A -_ — v e b

HCHAR subprogram
(Horizontal Character Repetition)

CALL HCHAR(pow-pumberscolumn-pumber,chac-codel,number-of-repetitionsi)

The HCHAR subprogram places a character anvwhere on the screen and,
optionally, repeats it horizontally. The cowznumber and coluwn-number locate
the starting position on the screen. The cow-oumber, column-pumbec.
char-code, and pumber-of-regetitions are nuwmeric expressions.

If the evaluation of any of the numeric expressions results in a noh-integer
value, the result is rounded to the nearest integer. The valid ranges are
given belows

Value Rapge

Row-pumber 1-24, inclusive
Calump-number 1-32, inclusive
Lhar-tode 0-32767, inclusive

Numbher-aof -repetiticns 0-32767, inclusive

0324F TI-99/2 Book 4 BRYIC Reterence Uuide - (FINAL DRAkFI1}

»CALL CLEAR
(The screen clears.)

~»CALL HCHAR(10,1,72,5C)

(graphic of screen on page 1I-8§0
XX

~NEW

»100 CALL CLEAR

+110 CHR=40

»120 FOR X=8 TO 22

130 CALL VCHAR(4,X,CHR,18%)
»140 CALL HCHAR(X-4,8,CHR,15)

+150 CHR=CHR+S
»160 NEXT X
»170 GOTO 110
~RUN
(The screen clears.)
(The screen displays a pattern.)

“fPreﬁs BREAK to stop the'program.ii*'

WAL Y Rl A SV ANNTE S | DI1Qd L v et v ilhel wrid.Lubs ETNTRE T W 1 ¥ = T

HCHAR subprogram

A value of 1 for the cow-pumber indicates the top of the screen. A value of 1
for the column=number indicates the lert side of the screen. The screen can -
be thought of as a "grid" as shown here.

(graphic of screen grid on page 1I1-81)

A character may not appear on your screen in columns I, 24 31, Or 325
therefore, you may want to use only columo-pumbers 3 through 30.

Char-cade can be from 0 through 327677 however, the computer will repeatedly

" reduce the value by 256 until it is less than 25%. Character codes 32 through
127 are defined as the standard ASCII character codes. Character codes ¢
through 31 are defined as special graphics characters.

1f you specify a chac—code for an undefined character, whatever is in that
memory location at that time is displayed.

Number—of -repetitions is the number of times the specified character 1s
repeated. The computer displays the character beginning at the specified
starting position and contiruing to the right side of the next line. If the
bottom of the screen is reached, the display continues on the top line of the
screen.,

To fill all 24 rows and 32 columns, use 748 for pumbec—-of-repeiitlons. Using
a number larger than 748 unnecessarily extends the time required to perform
this statement.

032&4P TI-99/2 Boak 4 BRSIC Reterence Luide (FINAL. DRAK)

»CALL HCHAR(24,14,29752)
8

»CALL HCHAR(24,14,35)
¥

»CALL HCHAR(24,14,132)
(The displayed character depends on what is now in mewmory.)

+NEW

>100 CALL CLEAR

»110 FOR K=9 TO 15

5120 CALL HCHAR(K,13,36+6)
>130 NEXT K

»140 GOTO 140

»RUN

(The screen clears.)

(graphic of screen on page II-82)

(Press BREAK to stop the program.)

VCHARR subprogram
(Vertical) character repetition)

CALL VCHAR(row-pumber .colump-punberrchac-codel»nunber-of -cepetitions])

The VCHAR subprogram places a character anywhere . the screen and,
optionally, repeats 1t vertically. The rouw-pumber and colump-ounber locate
the starting ‘pogition on the screen. The row-pumbers colusn-oumbec
char-code, and punber-of-repetitions are numeric expressions.

If the evaluation of any of the numeric expressions results in a non-integer
valué, the result is rounded to the nearest integer. The valid ranges are
given below:

Value Banae

Row—-pumber 1-24, inclusive
Colump-number 1-32, inclusive
Charc-code 0-32747, inclusive

Numher—of -repetitions 0-32767, inclusive

0326F TI-99/2 Book 4 BASIC Reference uuilde (FINRL DRAF ()

VUCHAR subprogram

A value of 1 for row-oumber indicates the top of the screen. R value of 1 for
the column-pumber indicates the left side of the =creen. The screen can be

thought of as a "grid" as shown here.

(graphic of screen grid on page II-81)

A character might not appear an your screen in columns 1, & 31y or 32. This
is not due to a faulty television set. Many manufacturers build “overscan"

into their picture tubes to compensate for increasingly narrower pictures
sometimes found on aging television sets, Therefore, you may want to use only

coluan-pumbers 3 through 30,

Chac-cade can be from O through 32767F howaver, the computer will repeatedly
reduce the value by 256 until it is less than 256. Character codes 32 through
127 are defined as the standard ASCII character codes. Character codes O
through 31 are defined as special graphics characters.

If you specify a char-code for an undefined character, whatever is in that
menory location at that time is displayed..

Number-of -repetitions is the number of times the specified character is
repeated. The computer displays the character beginning at the specified
starting position and continuing down the screen. If the bottom of the screen
is reached, the display continues at the top of the next column to the right.
If the right edge of the screen is reached, the display continues at the left

edge.

To fill all 24 rows and 32 columnsy use 768 for numhec—of-resetifiops. Using
'a number larger than 748 unnecessarily extends the time required to perform

T thig statement. :

~CALL. CLEAR

(The screen clears.)

~CALL VCHAR(2,10,484,13)

(graphic of first screen on page 1I1-83)

~NEW

+100 CALL CLEAR

#110 FOR K=13 TO 18

2120 CALL VCHAR(9,K,36446)
»130 NEXT K

»140 GOTO 140

»RUN

(The screen clears.)

{(graphic of second screen on page 1I-83)

- kPress BREBK to stop the praogram.) .

0326P T1-99/2 Book 4 BNASIC Retference Uuide (FINRL DRRFT)

GCHAR subprogram
(Get character)

CALL GCHAR(row-pumber,columpn-numberysumeric-vaciable)

The GCHAR subprogram enables you to read the character that is located at any
position on the screen. The position of the character is described by
cou-punher and colump-number. The ASCII numeric code of the requested
character is stored in the puperic-variable you specify in the CALL GCHAR
statement.,

The row—number and colusn-pumher are numeric expressions. If the evaluation
of either numeric expression results in a non-integer value, the value is

rounded to the nearest integer. A value of 1 for rpw-gumber indicates the top
of the screen. R value of 1 for caolunp-number specifies the left side of the

screen. The screen can be thought of as a "grid" as shown here.

(graphic of screen grid on page 11-84)

Quad ot | LYY/ e BOOK 4 wiiadl, R@ie. s UULHE N TR TR T C TR

~NEW

100 CALL CLEAR

»110 CALL HCHAR(1,1,36,748)
»120 CALL GCHAR(S5,10,X) '
»130 CALL CLEAR

»140 PRINT X
»RUN

(The screen clears.)

(The screen fills with $'sy code 36.)

(The screen clears.?

36

#% DONE #¥

0326P T1-99/2 Hook 4 BRSIC Reference Guide (FINAL DRAFT)

KEY subprogram

CALL KEY(key-unit,ceturp-varciable,status-variable)

The KEY subprogram enables you to determine when a key on the console is
pressed. The character corresponding to the pressed key is input to your
program. CALL KEY eliminates the need for an INPUT statement, and because the
character represented by the key pressed is not displayed on the screen, the
information already on the screen is not disturbed.

The key-upii is a numeric expression that must have a value of zero, which
indicates that the keyboard is the input device.

The returp—vaciable is the numeric variable where the computer places the
numeric character code corresponding to the key(s) pressed. The mumeric
character code is a number from O through 127. Refer to appendix XX for a
list of the character codes.

The status—vaciable is a numeric variable. The computer places 1in
‘gtatus-vaciahle one of the following codes:

0! $1 means a new key was pressed since the last CALL KEY was
performed.

ol -1 means the Same key was pressed as was returned in the last CALL
KEY.

ol 0O means no key was pressed.

0326 11 -YY/¢ pook 4 dRLLL Reterence Guxdé L TNRAL DRAFT)

~INEW

~100 CALL CLEAR

+110 FOR R=1 TO 24
~120 FOR C=3 TO 30
»130 CALL HCHRR(R,C,17)
»140 CALL KEY(O,K,S)
~180Q IF K32 THEN 140
=160 NEXT C

#1700 NEXT R

~RUN

(Solid box appears at row 1, column 3 of screen. Press SPBCE BAR to display
more boxes. When screen is filled, the program ends. Press BREAK to end

program earlier.)

Q324P TI-99/2 Book 4 BASIC Reterence Luide (FLINRL DRAFT)

PEEK subprogram

CALL. PEEK(address,oumeric-variablel!,pumeric—variablegya_a_«1?

" The PEEK subprogram is used to read the contents of memory locations.
Starting at the memory location specified by address, the value of that byte

of memary is assigned to pumeric-vacriahlel, the value of the next byte to
numecic-variahle2, and so forth. The number of variables listed after ihe

address determines haow many bytes are read.

Address must be a numeric expression from O to &5535. The values assigned to |
the variables are in the range 0 through 255.

POKE suberogram

CALL POKE(address»byfell,byte2sa_a_.))

The POKE subprogram is used to write data into memory locations. The value of

hytel is stored in the wmemory location specified by address, the value of
hyted is stored in the next memory location, and so forth.

The value of each data byte can be from O through 255. If the value is
greater than 255, it is repeatedly reduced by 256 until it is less than ehé.

Jsing a byte value greater than 3276/ causes an error.

Indiscriminate use of this statement may destroy the program currgntly 1n
memory and require that the computer be reset to continue.

»100 CALL PEEK(2096é, X1,X2,X3,
X4)

Returns the values in locations 2096, 2097, 2098, and 2099 and assigns them to
variables X1, X2, X3y and X4, respectively.

+100 CALL POKE(850,142,10,17)

Places the values 162, 10, and 17 in the locations B850, 851, and 852,
respectively.

0326P T1TI1-99/2 Book 4 BASLC Reterence Luide (FINRL DRAFT)

MaCHine Language subprogram
CALL MCHL (address)

This subprogram enables experienced programmers to run asseﬁbly language
programs. For mare information on the assembly language used by the THS?995
microprocessor, refer to the appropriate manuals.

Before using this command, you must reserve an area of wmewory for the assembly
language progam and enter the program. The area you reserve should be
immediately below the memory used for your BASIC program. The bottom of this
memory is at the location specified at address -4084. You reserve the memory
by finding the value at that address, adding the number of bytes your assembly
language program needs, and putting the new value back into the address.

The following program segment reserves an area of memory for an assembly
language programs assuming that the number of bytes of memory needed has been
previously assigned to the variable MEMROD.

>140 CALL PEEK(-4086,HEX1,HEX2)

»150 DECIMAL=HEX1¥2546+HEX2

»140 NEWDEC IMAL=DEC IMAL+MEMRGD

»170 HEXNEWI=INT(NEWDECIMAL/286)
»180 HEXNEW2=NEWDECIMAL-HEXNEW1%2546
»190 CALL POKE(____ »HEXNEW1,HEXNEWR)

af ter the area has been reserved, put your assembly language program into
memory using POKE statements, starting at the address that was previaously the
bottom of memory. MAssembly language programs should start on an even-numbered
address byte.

»200 DECIMAL=INT((DECIMAL$1)/2)%2
»210 CALL POKE(DECIMAL+$1,yvalue) Q
w220 CALL POKE(DECIMAL12,value)

« (Program lines . . .)
»290 CALL POKE (DECIMAL+MEMRQD,value)

To“run the assembly language programs enter CALL MCHL(address) as a program
line, where address is the entry paint of the progran.

»300 CALL MCHL (address)

The computer executes the routine. When the assembly language program ends,
assuming the wachine language program does not alter any pointers or other
items used by BASIC, program execution resumes at the line after, CALL MCHL.

- b

0326F TI-99/2 Baok 4 BASIC Reference Guide (F [RAL DRAFT)

GLOSSARY

Occessary. Devices--See Pecipberal_ Devices.

Acray-—A collection of numeric or string variabl->: arranged in a list or
matrix for processing by the camputer. Each element in an array is referenced

by a subscript describing its position in the list.

aSC11--The American Standard Code for Information Interchangey the code
structure used internally in most personal computers to represent lettersy
numbers, and special chacacters.

BASIC--(Beginners All~purpose Symbolic Instruction Code)——An easy—-to-use
popular programming language used 1in most personal computers. It was
developed at Dartmouth College in the 60's.

Baud—The transmission rate, in bits per second, of data over a communication
lines, such as between a computer and a peripheral. 300 baud indicates
approximately 300 bits of information are being transmitted serially every
second.

Bipacy——The two-digit (bit) mnumber system based on O and 1. Computers
recognize the binary bits 0 and 1 by using gates. Gates are electronic
circuits that are either off or on, representing O or 1, respectively.

Bit--A binagy digit (0 or 1),

Brapch-—A d¥parture from the sequential performance of program statements. AN
unconditional branch causes the computer to jump to a gpoecified program line
every time the branching statement 1is encountered. A conditional branch
transfers program control contingent on the result of some arithmetic or
logical operation.

§
Breakpoint~-AQ point in a program specified by the BREAK command at which =
program execution is suspended. During a breakpointy you can perform
operations in the Immediate Mode to help you locate program errors. Program
execution can be resumed with a CONTINUE command, unless the program was

adited during the break.

Buffer——An area of computer memory used for temporary storage of an input or
output record.

Bug——An error in the harduware or saiiuane of a computer that causes an
intended operation to be performed incurrectly.

Byte-—A string of binacy digits (bits) treated as a unit, of ten representing
dne data charactec. The computer's memory capacity is often expressed as the
Kumber of bytes available. For example, a computer with® "16K" has about
16,000 bytes of memory available for storing programs and data.

0326P TI-99/2 Boak 4 BRSIC Reference Luide {FINAL DRAFT)

Lassette—A standard audiq cassette tape that is used to store programs and
ather datay the same type aof tape cosmonly used to record music. (Use of
"metal” tapes is pot recommended.)

Central Processipg_Ungit (CPU)--The nerve center of a computer; the network of
electronic circuits that interprets programs and tells a computer how to carry

them out.

Character--A letter, number, punctuation symbol, or special graphics symbol,
usually equivalent to one byte.

Chip——Tiny silicon slices used to make electronic memories and other
circuits. R single chip may have as many as 30,000 electronic parts.

Circuit Board--A rigid fiberglass or phenolic card on which various
electranic parts are mounted. Printed or etched copper tracks connect the
various parts to one another. |

Command-—-An instruction that the computer performs immediately. Commands are
not a part of a pragram and thus are entered with no preceding line number.
Examples: NEW, LIST, RUN, CALL. CLEAR.

Conputer~-A network of electronic switches and memories that processes daia.

concatenation—~The linking of two or more stripgas to wake a longer string.
The "&" is the concatenation operator.

Conziant--R numeric real number {(such as 1.2 or -9054) or a string of
characters (any combination of up to 112 characters enclosed in quotes, such
as"HELLO THERE® or "275 FIRST ST.™)

CPU--See Ceniral Processing_Upit.

Cursaor-—A flashing underline or rectangle that indicates where a fyped -
chacacterc appears.

Rata--Basic elements of information that are processed or produced by the
computer. The singular form seldom used is datum.

. Defauli—A standard characteristic or value that the computer assumes if

certain specifications are omitted within a statepent or pragcam.

RQisplay—As a nouny, the video screen; as a verby to cause characters to appear
an the screen.

Edit Mode-~The mode used to change ex1sting program llnes. The EBIT mode is
entered by using the Edit Comwmand or by entering the line number followed by

SHIEI E (UP ARROW KEY) or SHIEYX X (DOWN ARROW KEY). The line specified is
displavyed on the screen and changes can be made to any chacacter (except the

lipe-number) using the editing keys.

End-af-file (EOF)~-The condition indicating that all data have been read from
a file.

Execute--To run a programy to perform the task specified by a statemepnt or
comamand. |

Q3246P TI1-99/2 Book 4 BiolL Rerterence Luide (FIMRL DRARFT?

Expaonent-—A number indicating the power ta which a number or expression 1s to
be raised, usually written to the right and above the number.
8 |
For example: 2 =2x2x2x2x2x2x2x2. In TI-99/2 BASIC, the exponent is entered
following the = symbol or following the letter "E" in scientific notation.
| 8)
For example: 2 =2"8; 1.3 X 10 =1.3E25 (or 1.3E+425).

Expapential Notatiaon—-See scigntific poiation.

Expressiaon—-A combination of constants, variables, and operators that can be
evaluated to a single result) expressions can be numeric, string, relational,
or logical.

File-—A collection of related data records stored on a pgripheral. devices
also used interchangeably with "device® for input/output equipment that cannot
use multiple filess such as a line printer,

Eizted-lepnstb_recards--File records that are all the same length. If a file
has fixed-length records of 95 characters, each record is allocated 95 hyies
eaven if the data occupy only 76 positions. The computer adds padding
characters on the right to ensure that the record has the specified length.

Functiop—-A feature that enables you to specify as "single" operations a
variety of procedures, each of which actually contains a number of stepss for
example, a procedure to calculate square rocts via a simple reference name.

Gate--A very simple electronic circuit that is always either on or of f.
Clusters of gates can manipulate binary numbers (0 = off, 1 = on). They can
also count, do arithmetic, make decisions, and store binary numbers. Gates

are the basic building blocks of computers.

Hardware--The various devices that comprise a computer system, including
pemory, the keyboard, the screen, data storage/retrieval devices, Jine .
printers, etc.

Hertz—-A unit of frequency; one Hertz = one cycle per second.

Hexadecimal-—-A base 16 number system using 16 symbals, 0-9 and A-F. It is

" used as a convenient "shorthand” way to express binary code; for example, 1010

in binary is A in hexadecimal} 11111111 in binary is FF in hexadecimal.

Impediate Mode--A computer mode in which commands are entered directly into
the computer without a line number$ such commands are executed immediately.

Also called Command Mode.

Iaccﬂmeni--ﬁ positive or negative value that is used to modify a variable.

e r

Input-—-As a noun, data entered into memory to be processed} as a verb, the
process of transferring data 1nto memory. ,

Ipput_line-—The amount of data that can be entered at one time;s in TI-99/¢2
BASIC, 112 characters.

"y

0324P T1I1-99/2 Book 4 BASIC Reterence Luide (FINAL. DRAFT)

Internal dats _format--Data in the form used directly by the computer.
Internal numeric data are 8 bytes long plus 1 byte that specifies the lengthj

the length for internal string data is one byte per character in the gicing
plus one length-—-byte.

Inteaer——A whole number, either positive, negative, or zero.

Intecereter—The program stored inside a computer that converts or translates
TI-99/2 BASIC statewents into the computer’'s machine language.

Input/0utput (I/03—--Usually refers to a device functiony 1I/0 is used for
communication between the computer and other devices (e.g.s keyboard, Program

Recorder).

Itecatiaon——The technique of repeating a graup of program statements; oane
repetition of such a group. See Loop.

\ 10

K--Short for *kilo," meaning “thousand®; 1K of memory is actually 1024 (2)
bytes. Thus, a 4K wmemory has approximately 4,000 storage elements.

Lipe——See input lines print line, or proaram lipe.

Line pumber—-—A number identifying a statement in a programj line numbers
determine the order in which a computer executes the commands of a program.

Loop——R group of consecutive prog lines repeatedly performed, usually a
specified number of times. |

ﬁaﬁiissa—-The base—number portion of a number éxpreﬁsed in scientific
notation; in 3.264E44, the mantissa is 3.2644.

Mass-storage device--R paripheral_device (such as the Pragram Recorder or
™ | ;

Wafertape Drive) that stores programs or data for later use by the
computer.,

Memory—-—See ROM, ROM, and mass staorage device.

gﬂlﬁtﬂﬂtﬂﬁ&iﬁﬂﬂ*‘Th& central procE$51ng unit of a computer assembled on a

 "single silicon chip.

NMill _string—A siring that contains no characters and has zero lemgth.

Number_mode-—The mode in which the computer automatically generates progaran
lipe numbers for entering or changing statements.

Uperator--A symbol used in calculations (arithmetic operators),in comparisons
(relational operators), and string concatenation (linkage). The arithmetic
operators are 4, -y % /, and ~. The relational operators are >y, 7y =y >=,
=y and <>r. The stiring operator is &.

Qutput--As a nouny, information supplied by the computer; as a verb, the |
process of transferring information from the computer's memory to a pecipheral

devicey such as a screen, printer, or mass-siorage device.

0324P TI-99/2 Book 4 BRSIC Reference Guide (FINAL DRAFT?

Overflow—-The candition that occurs when a rounded value greater than
9 _9900009900999E127 or less than —9.9999999999999E127 is entered or computed.
When an overflow occurs, the value is replaced by the computer's limit, a

warning is displayed, and the progaram continues.

Parameter-—-A value that affects the output of a staismept or fuoction.

Peripheral Devices—--Equipment that attaches to the computer to extend its
functions and capabilities} these units sendy receive, or store data. They

are often called simply peripherals.

Print lipe--A 2B-position line used by the PRINT and DISPLAY statements.

Prgaram--R set of statements that tells the computer how to perform a complete
task.

Proaram._line- A line containing a single st.tements, the maximum length of
which is 112 characiers.

Pcomet——~A symbol () that marks the beginning of each command or eroacaw lines
a symbol or phrase that requests input from the user.

Pspudo-random_pumhec~-A number produced by a set of calculations (an
algorithm), sufficiently random for most applications. A truly random number
ies pbtained entirely by chance.

Radix—100--A number systewm based on 1003 see "Accuracy Information.”

ROM--Random—access wemory; the memory where program statements and data are
stored during sprogram executicn. New programs and data can be read in,
accessad, and changed in RAM. Data stored in RIWM are erased when the power 1s

turned off or BASIC is exited.

-

Recard--Q collection of related data, such as an individual's payroll |
information or a student's test scoresy a group of similar records, such as a .
company's payroll records, is called a file.

Reserved word—--R special word with a predefined meaning in programming

~ languages. A reserved word must be spelled precisely, appear in its proper

- pasition in a statement or command, have one space preceding and following it,
and must not be used as a variable name. s

ROM——Read-only memory; the memory where certain instructions for the computer
are permanently storedj) ROM can be read but cannot be changed. ROM is not
arased when electrical power is turned off.

Rup_Mode--The mode in which the computer executes a progran. Bun Mode 13
~terminated when program execution ends, either normally.or abnarmally. To
leave Run Mode, press CLEAR during program execution (see Breakpuint).

0326F TL1-99/2 Baoaok 4 HARS1C Reference Guide (F LR, DRAFT)

Scieptific Notatinn~—A method of expressing very large or very small numbers
by using a base number (mantissa) times 10 raised to sowme power (expanent).
To represent scientific notation in TI-99/2 BASIC, enter the mantissa
(preceded by the winus sign if negative), the letter E, and the power of 10
(preceded by & minus sign if negative). For example, 3.244E4} -2.47E-17.
This special format of scientific notation is called expopnential nqataticn.

Scrall--Movement of text on the screen to display additional information.

Sof tware-~Programs that are executed by the computer, including programs built
into the computer, programs on cassettes or wafers, and programs entered by

the user.

Statement--An instruction (preceded by a line number) in a program. In
TI-99/2 B8ASIC, only one statement is allowed in a proaram._ling.

Siripg--A series of letters, numbers, and symbols treated as a unit.

Subproaraa——R predefined, general-purpose procedure accessible to the user
through the CALL statement in TI-99/2 BASIC. Subprograms extend the

capability of BRSIC.

Subroutipe——A program segment that can be used more than once during the
execution of a program to perform a special task (e.g., a set of calculations
or & print routine). In TI-99/2 BASIC, a subroutine is accessed by a GDSUB

statement and terminated with a RETURN statement.

Subscript--A numeric expression that specifies a particular 1tem in an arLcays
in TI-99/2 BASIC, the subscript is written in parentheses immediately
following the array nane.

Irace——A command that lists the order in which the computer performs program
statements; tracing line numbers can help you find errors in a program.

-y

Underflow—The condition that occurs when the computer generates a numeric
value greater than -1E-128, less than 1E-128, and not zero. When an underflaw

occurs, the value is replaced by zero.

Variable—-A value that may vary during program execution. A variable is

.. .stogred in a nemory 1ucat1nn and can be replaced by new values during program

execution,

Variable-lenatbh_recorcds-—Records in a file that vary in length depending on
the amount of data rer record. Using variable-length records conserves space
on a file. Variable—~length records must be accessed sequentially.

quéP i 1 ’ hf?l"JE- E*JU"‘. "1 TR TR I PR A S B A4 S WU T LI R Sy 1 N P RO TR

APPENDIX XX ASCII CHARACTER CODES

The following is a list of the ASCII character codes in decimal notation and -
their corresponding characters. OGraphics symbols are assigned to codes O
through 31. The Basic Computer 99/2 uses standard ASCII characters for codes
32 through 127. The cursgr is assigned to conde XX and the adae character 1s
assigned to code XX.

Note that the characters corresponding to codes 98 through 127 cannot be

displayed when entered from the keyboard. You may, however, display them with
elither HCHAR or VCHAR.

RSCII
CODE CHARACTER

00 GS
01 GS
0 GS
03 68
04 S
05 05
06 G5
07 GS
08 GS
0? G5
10 GS
11 G5
i2 G5
13 GS
14 GS
15 GS
16 GS
17 GS
18 GS !
19 S
20 06S
el GS
ce GS
23 GS
.24 GS
25 GS
26 GBS
e7 GBS,
28 GS
e? GS
30 G5
31 GS

- 32 (space)

« 33 ! (exclamation point) S
34 " (quote) ,
35 % (number or pound sighn) |
36 § (dollam
37 7 (percent)

38 & (ampersand)
32 ' (apostrophe)

0326P 11-99/2 Hook 4 BASIC Reterence Luide

40
41
42
43

45

46

97
48
49
50
a1
5¢
53
54
55
56
&7
58
59
50
41
b¢2
- 63
&4

&6
&7

&9

/0
71
/2
73
/4
75
76
77
/8

7%

80
81
82
83
84
85
86
87
88

XN ECC - NDO OO ZTENrRXRUSRICOTIMOODMIDERD VO H Ao QO NGOMDLIM = O

(
)

| - = %

(open parenthesis)
(close parenthesis)
(asterisk)

(plus)

(comma)

(minus)

(period)

(slant)

(colon)
(semicolon)
(less than)
(equals)
(greater than)
(question mark)
(at)

(FLHRL DRet P2

VIdoF

20

?1

72

73

4

75

94

97

78

79

100
101
102
103
104
108
104
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
124
127

VLh=27 72 buwr % et Kelerehee Ldige

[(open bracket)

(reverse slant)
] (close bracket)
(caret)
(underline)
{grave)

N X x £ < C M~ T0TDTO0 D x>0 Ooooos

§ (left brace)
(vertical line)
§ (right brace)

{(tilde)
DEL (appears Onh screen as a blank)

S EE TS

XLV TR

Q326P TI-¥Y92/2 Book 4 BASIC Rererence uvuide
FUNCTION KEY CODES

The function keys are assigned the following codes.

(F INRL DRAK)

These codes are returned

by the CALL KEY subprogram when the corresponding keys are pressed.

KEY CODE

;. b

~ O~

0 0

10
11
R
;_lé
14

15

Function Name

RID
CLEAR

DElLete

INSert
QUIT

REDO

ERASE

LEFT ARROW
RIGHT ARROW
DOWN ARROUW

UP ARROW

PROC'D

" ENTER

BEGIN ’
BACK

Function Key

ECIN £
ECIN 4
ECIN 1
ECIN 2
ECTN =
ECIN 8
ECIN 3

ECIN S
ECIN D
ECIN X
ECIN E
ECIN &
ENTER

ECIN &
ECIN 2

ERROR MESSAGES

1.

%

ERRORS FOUND WHEN ENTERING A LINE

BAD LINE NUMBER
la!' Line number or line number referenced is less than 1 or greater than

32767 .
in! RESEQUENCE specifications generate a line number greater than 32/76&7.

BAD NAME
tn! The variable name has more than 15 characters.

CAN'T CONTINUE
10! CONTINUE was entered with no previous breakpoint or program was edited

af ter a breakpoint occurred.

CAN'T DO THRT

'o! Attempted use of the following program statements as commands: DATA,
DEF: FOR, GOTO, GOSUB, IF, INPUT, NEXT, ON, OPTION, RETURN.

o! Attempted use of the following commands as program statements (entered
with a line number): BYE, CONTINUE, EDIT, LIST, NEW, NUMBER, OLD, RUN,

SAVE.
ot Entering LIST, RUN, or SAVE with no program 1in memory.

INCORRECT STATEMENT
io! Two variable names in a row with no valid separator between them (R$B).

1af A numeric constant immediately following a variable with no valid
separator between them (N 257).
to! A quoted string with no closing quote mark.

‘1! Invalid erint separator between numbers in the LIST, NUMBER, or

RESEQUENCE commands.
19! Invalid characters following CONTIMUE, LIST, NUMBER, RESEGQUENCE 4 or

RUN commands.
'o! Command keyword not the first word in a line. !
io! Colon not following the device name in a LIST command.

LINE TOO LONG
! Input line too long for the input buffer.

MEMORY FULL

“i1g! Entering an edit line that exceeds available memory.

‘n! A line added to a program that causes the program to exceed avallable
Mencory.

0326P TI1-99/2 Hoaok 4 BALIC Reterence Luide (FINARL LKRET)

I1. ERRORS FOUND WHEN SYMBOL TABLL IS GENERATED

After RUN is entered but befare any program lines are performed, the computer
scans the program to establish a symbal table. A symbol table is an area of
remory where the variables, arrays, functions, etc. for a program are stored.
A program does not run until its symbol table is generated.

During the scanning process, the computer recognizes certain types of arrors.
I1f an error is detected during the scanning process, no program lines are
perfarmed and all the values in the symbol table are zero (for numbers) or
mill (for strings).

The error message displayed contains the line number of the statement which
caused the error. The message BAD VALUE IN 100 informs you that line 100
contains a bad value. The error list below contains more information on the

cause aof the errors.

* BAD VAL UE
ol A dimension for an array greater than 32767.

io! B dimension for an array of 0 when OPTION BASE = 1.

¥ CAN'T DO THAT
Io! More than one OPTION BASE statement in your progran.
10! The OPTION BASE statement with a higher line number than an array
definition.

% FOR-NEXT ERROR
to! Mismatching of FOR and NEXT statements.

% INCORRECT STATEMENT
DEF

io! No closing parenthesis “)" after a parameter in a DEF statement,
‘o! Equals sign (=) missing in DEF statement. * .

o! Invalid variable name for parameter in DEF statement.

DIM

'o! DIM statement with no dimensions or with more than three
dimensions.

'o! A dimension in.;a DIM statement not a number.

io! A dimension in & DIM statement not followed by 4 comma or a
closing ")".

'o0! The array—-name in a DIM statement not a valid variable name.

'o! The closing ")* missing for array subscripts.

DPTION BASE
o! OPTION not followed by BRSE.
'o! OPTION BASE not followed by O ar 1.

% MEMORY FULL)
'n! Array size too large.
in! Not enough memory to allocate a variable or function.

0326F TI-99/2 Book 4 BRSIC Reference Quide (FINARL DRAFT)

% NAME CONFLICT
io! The zame name assigned to more than one arrayy 2.8., DIM A(R), A(2,7).
o' The same name assigned to an array and a simple variable.
in! The same name assigned to a variable and a function.
tn! References to an array have a different number of dimensions far the

arrayy e.9.y B=0A(2,7)42,PRINT A(S5).

Vacor 1L -7/ BOOR 4 pHolL Releleliibe wlide vkt LRHE L4

III.ERRORS FOUND WHEN A PROGRAM IS RUNNING

When a program is running and the computer encounters a statement that it
cannot performy an error wessage is printed. The program terminates unlass
the error is only a warning. All variables in the program have the values
assigned when the error occurred. The number of the line containing the error
is printed with the @rror message (for example, CAN'T DO THAT IN 210).

¥ BOD ARGUMENT
'o! A built-in function with a bad argument.
‘ol String expression for either ASC or VAL with a zero length (null

astring). |
'n! String expression 1in VAL not a valid representation of a numeric

constant.

¥ BAD LINE NUMBER
‘o! Specified line number in branching statement (GOTO, GOSUB, IF THEN, IF

. THEN ELSE, ON GOTO, ON GOSUB) nonexistent.
ol Specified line number in BREAK or UNBREAK nonexistent (warning only).

fad BAD NAME |
'o! Invalid subprogram name in a CALL statement.

¥ BAD SUBSCRIPT |
‘0! Subscript not an integer.
lo! Subscript with a value greater than the specified or allowed

dimensions of an array.
'o! Subscript O used uhen_DPTIDN BASE 1 specified.

* 8AD VALUE
CHAR
to! Character-code in CHAR statement out of range.
'o! Invalid character in pattern-identifier in CHAR statement.

4
CHRS
lo! Argument in CHRS negative or larger than 327647.

EXPONENTIATION ()
'a! Attempt to raise a negative number to a fractional power.

* 'FOR L |
o! Step increment of zero in FOR TO STEP statement.

HCHAR, VCHARy ar GCHAR
'n! Row or ¢alumn number in HCHRR, UCHHR, or GCHAR statement out of

rFrange.

" KEY
v lo! Key unit in KEY statement out of rarmge.

ON
lo! Numeric expression indexing a4 line number out of range.

Page 109

0326P TI1-99/2 Book 4 BARSIC Reterence Guide (FTHAL. DRAFT)

OPEN, CLOSE, INPUT, PRINT, RESTORE

0! File rnumber negative or greater than 255.
'o! Number of records in the SEQUENTIAL option of an OPEN statement
non~-numeric or greater than 32.°87.

'o! Record-length greater than 22747 in the FIXED aoption of an OPEN
statenent.

'o! Numeric expression that is negative, zero, or larger than 32767 in
the POS statement.

'n! The valuae of numeric-expressionl (character position) or

numeric-expressiong (length of substring) negative or larger than
32767 .

io! The value of the character position in the TAB function greater
than 32767.

¥ CAN'T DO THART

'o!
'n!
D!

ol

RETURN with no previous GOSUB statoment.

NEXT with no previous matching FOR statement.

The control-variable in a NEXT statement not matched with the
control-variable in the previous FOR statement.

BREAK command with no line number.

¥ DATA ERROR

! No comma betuween items in DATA statenent.
' Yariable~list in READ statement not filled but no more DATA statements

available.

! READ statement with no DATA statewment remaining.
| Assigned a string value to a numeric variable in a READ statement.

' Line-number in RESTORE statement greater than the highest line aumber

in the program.

¥ FILE ERROR

Inl

Attempt to CLOSE, INPUT, PRINT, or RESTORE a file not currently npen.

'o! Attempt to INPUT records from a file opened in OUTPUT or APPEND mode.

ot
‘0!

Attempt to PRINT records to-a file opened in INPUT mode.
Attenpt to OPEN a file that is already open.

* INCORRECT STATEMENT
- General

o' Open parenthesisy "(", close parenthesis, ")", or both missing.

'o! Comma missing.

‘o! No line number where expected in a BREAK, UNBREQK, or RESTORE
(BREAK 100,)

‘to! "4* op "-" nut followed by a numeric expreas1un.

'p! Expressions used with arithmetic operators not numeric. :

to! Fxpressions used with relational operators not the same type.

lo! Attempt to use a string expression as a subscript.

'o! Attempt to assign a value to a function.

'o! Reserved word aut of order.

'n'wUnexpected arithmetic or relational operator present.
'o! Expected arithmetic or re]atlnnal operator missing.

Page 110

0326P TI-99/2 Book 4 BRSIC Reference Luide (FINAL ORAFT?

Built-in Subprograms

in!
‘o!
'n!

The key-status in KEY not a numeric variable.
The third specification in GCHAR not a numeric variable.
CALL not followed by a subprogram name.

File Processing-Input/Output Statements

ol

o!

Missing number sign ($) or colan (%) in file-number specification
for OPEN, CLOSE, INPUT, PRINT, or RESTORE.

Filenarse in OPEN or DELETE not a string expression.

Keyword in OPEN statement that is invalid or appears more than

oNCe.

t The number of records less than zero or greater than 255 in the

SEQUENTIAL option of an OPEN statement.

' A record length of less than zero or greater than 255 in the FIXED

option of an OPEN statement.

' A colon (2) in the CLOSE statement not followed by the keyword

DELETE.
Required print separator (comma, semicolon, colon) missing in the

PRINT statement.
Filename in SAVE or OLD command not a valid string expression.

General Program Statements

FOR
10! The keyword FOR not followad by a numeric variable.

lo! The control-variable in a FOR statement not followed by an
equals sign (=).

'n! The keyword TO missing in a FOR statement,

io! The limit in a FOR statement not fulloued by the end of line

or the keyword STEP.

Page 111

0324P TI-?9/2 Book 4 BARSIC Referencs CGuide (FINAL. DRAFT)

IF
o! The keyword THEN missing or not followed by a line number.

LET
'o! Equals sign (=) missing.

NEXT
'a! The keyword NEXT not followed by control variable.

ON-GOTQ, ON-GOSUB
fo! ON not followed by a valid numeric expression.

RETURN
'a! RETURN fallowed by an unexpected word or character.

User-Defined Functions
'o! Mismatch between the number of function arguments and the
nunber of parameters far a user~defined function.

% INPUT ERROR

'o! Input data too long for Input/OQutput buffer (only a warning when data
are entered from the kevboard; data can be re-entered).

'o! Mismatch between number of variables in the variable~list and number
of data items input from keyboard or data file (only a warning if from
keyboard).

'o! Non-numeric data INPUT for a numeric variable (this condition could be
caused by reading padded characters on a file record; only a warning
if from keyboard).

o! Numeric INPUT data causing an overflow (only a warning if from
keyboard).

* I/0 ERROR--This condition generates an accompanying error code as follows:
A two-digit error code (XY) is displayed with the meszage

% I/0 ERROR XY IN lipe-puwber

- where the first digit (X) indicates which I/0 operation caused the error
ahd the second digit (Y¥Y) indicates the kind af error that occurred as
shown below.

X Value Operation

OPEN

CLOSE

INPUT |

PRINT g
RESTORE

oLD

SAVE

DELETE

N D WTY e O

Page 112

0326F 147Y7. ¢ BLOOKk 4 bBHLLIL Kelerenwe uulow VELTURL. W HE §

Y Value Error Type

0 Device name not found (invalid device or file name in DELETE,
LIST, OLDy, or SAVE command).

Device write-protected (attempted to write to a protected file).
Bad OPEN attribute (one or mare QPEN options were illegal or did
not match the file characteristics).

Illegal oreration (input/output command not valid).

Out of space {(attempt to vwrite with insufficient space remaining
on the starage medium).

End of file (attempted to read past the end of a file).

Device error (device damaged or not connectedj this error can
occur during file processing if a peripheral device is
accidentally disconnected while the program is running?.

7 File error (the indicated file does not exist or the file type

does not match).

o N 5 G o~

¥ MEMORY FULL
'o! GOSUB statement branching to its own line—number.
0! Too many pending subroutine branches with no RETURN performed.
'o! Too many user—defined functions that refer to other user~defined
functions.
'n! Relational, string, or numeric expression t0o long.
'o! User~defined function referencing itself.

¥ NUMBER TOO BIG (only a warningj value is replaced by the computer limit as
a shown below).
'o! A numeric operation producirng an overflow (value greater than
?.7999999999999E127 or less than -9.9999999999999tE12/7).
'‘n! A READ statement attempt to assign an overflow value to a numeric
variable.
'o! Qn INPUT statement attempt to assign an overflow value to a numeric
variable.
:
¥ STRING-NUMBER MISMATCH
'o! A non—numeric argunent specified for a4 built-in function, TRB
function, or sxponentiation operation,
‘o! A non~-numeric value in a specification requiring a numeric value.
'o! A non-string value in a specification requiring a string value.
o! Functlon argumtnt and paraneter for a user—defined function disagree

o! F11e-numher in OPEN, CLOSE, INPUTr PRINT, or RESTORE not numeric.

‘o! Attempt to assign a string t0 a numeric variable.
o! Attempt to assign a number to a string variable.

Note! Additional error codes may occur when you uyse peripherals, such as the
* ™ ™

HEX-BUS devices. Consult the appropriate peripheral ouwner's manual for
more information on these error codes. - y

Page 113

0326P TI-99/2 Book 4 BASIC Reterence Guide (FItRL DRAFT)

IV. ERROR RETURNED WHEN AN OLLD COMMAND IS MNT SUCCESSFUL.

¥ CHECK PROGRAM IN MEMORY
The OLD command does not clear program mewmory unless the loading operation
15 successful. If an OLD command fails ar is interrupted, however, any
program currently in memory may be partially or completely overwritten by
the program being loaded. LIST the program in memory befare proceeding.

Page 114

0324P T1-99/2 Book 4 BASIC Reterence uuide (FINAL DRAFT)

ACCURACY INFORMATION

Displayed Resulis_Versus. Bcouracy

The Basic Computer 99/2, like all other computers, operates under a fixed set
of rulee within preset limits.

The mathematical tolerance of the computer is controlled by the number of
digits it uses for calculations. The computer appears to use 10 digits as
shown by the display, but actually uses more to perform all calculations.
When rounded for display purposes, these extra digits help maintain the
accuracy of the values presented. Example:

1/3X3 = 9999999999 (inaccurate)

The example shows that 1/3 = .3333333333, when multiplied. by 3, produces an
inaccurate answer. However, a 13-digit string of nines, when rounded to 10
places, is 1.0000000000.

The higher-order mathematical functions use iterative and polynomial
calculations. The cumulative rounding error is usually kept beyond the tenth
digit so that displayed values are accurate,

Normally, there is no need to consider the undisplayed digits. With certain
calculations, however, these digits may appear as an answer when not
expected. The mathematical limits of a finite operation (word lengthy
truncation, and rounding errors) do not allow these digits to be always
completely accurate. Therefore, when subtracting two expressions that are
mathematically equal, the computer may display & nonzero result.
Examples

X=2/3-1/3-1/3

PRINT X

1E-14

¥

The final result indicates a discrepancy in the fourteenth digit.'

Such possible discrepancies in the least significant digits of a calculated
result are important when testing if a calculated result is aqual to another
value. For the previous example, the statement shown below can be used to

. tiuncate the undisplayed digits of the variable X, leaving only the rounded

display value.

X=1E-10%(INT (X¥1E10))

Interpal Numecic_Representation :
The TI1-99/2 Computer uses radix-100 format for internal calculations. A

gingle radix-100 digit has a range of value from 0 to 99 1in hasf 10.

The computer uses a 7-digit mantissa, which results in 13 to 14 digits of
decimal precision. A radix-100 exponent ranges in value from -44 to 443,

128 126 '
which yield decimal exponents from 10- to 10+ ., The exponent and the
7-digit mantissa combine to provide a decimal range from -9.9999999999999E12/
through -1.0000000000000E~128; zeroj and then $1.0000000000000E~128 through
$9.9999999999999€127.

Page 115

i'J\...-J‘:...‘-...i'I i A P ' e A a L1 — 1 Vs e N T g Come e L LI

The internal representation of the radix (00 format requires eight bytes. The

first byte contains the exponent and the algebraic sign of the entire
floating-point number. The exponent is a /-bit hexadecimal value offset or

biased by 40 (the 16 subscript indicates hexadecimal values in this

16
appendiz). The correspondence betueen esponent values is shown below.

Biased hexadecimal value 00 to 40 to 7F
14 14 14

Radix—~100 value ~&64 to 0 to +43

Decimal value -126 to 0 to 126

If the floating-point number iz negative, the first byte (the expanent valua)
is inverted (1's complement). Each byte of the mantissa contains a radix-100
digit from 0 to 99 represented in binary coded decimal (BCD) form. In ather
wordsy the most significant four bits of each byte represent a decimal digit
from ¢ to ¢ and the least significant four bits represent a decimal digit from
0 to 2. The first byte of the mantissa contains the most significant digit of
the radix-100 number. The number is normalized so that the decimal point

immediately follows the most significant radix~-100 digit.

Page 11&

0326F TI-99/2 Book 4 BRSIC Reterence Luilde

CFInEL DRAKFT)

The following examples shown some decimal values and their internal

representations.

Decimal

Number

127
10

0.5
10

u/2

-U/2

Internal Value

41

3F

40

01

01

33

18

00

39

00 00
00 00
07 &0

o7 60

Page 117'

00

00

c0

el

00

00

43

43

00

00

SF

5F

VouGF ba Y s ol T TR | AR R TR T W AU O SRS I £ PO YRR) W RO ¥ 0 S AT [PR 3 | SR

RESERVED WORDS

The following is a complete list of all reserved word in TI-9%9/2 BASIC.

Reserved words are words that are reserved for use by TI-99/2 BASIC and may
not be used as variable names. However, you may use a reserved word as part

of a variable name (for exampley ALEN and LENGTH are allowed).

ABS
APPEND
ASC

ATN
BASE
BRERK
BYE
CALL
CHRS
CLEAR
CLOSE
CON
CONTINLUE
COoS
DATA
DEF
DELETE
DIM
DISPLAY
EDIY
ELSE
END
EOF
EXP
FIXED
FOR
GCHAR l
GO
GOSUB
GOTO
HCHAR
IF
INPUT
INTERNAL
KEY

LEN

LLET
LIST
L.OG

NEW
NEXT >
NUM
NUMBER

Page 118

VI onr VL= 7/, OOOK -t DG el e enee uuiuﬁ VLI, LR LS

LD
ON

QPEN
OPTION
QUTRUT
PEEK
PERMANENT
POKE

POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES
RESEQUENCE
RESTORE
RETURN
RND

"RUN

SAVE
SEGS
SEQUENTIAL
SGN

SIN

SQR

STEP
STOP
STRS

SUB

TAB

TAN

THEN

T0

TRACE
LUNBREAK
UNTRACE
UPDARTE
VAL

- JARIABLE
VCHAR

Page 119

Blank Spaces

In general, a blank space can occur almost anywhere in a program without
affecting the execuation of the program. However, any extra blank spaces you
put in that are not required will be deleted when the program line is
displayed by the EDIT, NUM, or LIST command. Th-re are some places where
blank spaces must not appear, specifically:

(1) within a line number

(2) within a reserved word
(3) within a numeric constant
(4) within a variable name

The following are some examples of incorrect use of blank spaces. The correct
line appears in the coluaman at the right.

(1) 1 00 PRINT"HELLO*

(2) 110 PR INT"HOW ARE YQU?*®
(3) 120 LET A=1 Q0

(4) 130 LET CO ST=24.95

811 reserved words in a program should be immediately preceded and followed by
one of the following:

a blank space

an arithmetic operator (¢ - ¥ / 7)

the string operator (&)

a special character used in a particular statement format (<=>()y3:¥)

end aof line (ENIER key)

Examples:

>100 PRINT "HELLO"

»110 PRINT "HOW ARE YOU?"
»120 LET A=100

»130 LET COST=24.95

Page 120

Vo Gl 1L 770 DUOK 9 Dol DEED EIILE UL ilue VL INRR. W

Line Numbers

Each program is comprised of a sequence of BASIC language program lines
ordered by line number. The line number serves as a label for the program

line. Each line in the program begins with a line number which must be an
integer between 1 and 327487, inclusive. Leading zeroes may be used but are
ignored by the computer. For example: 033 and 33 will be read as 33. You
need not enter lines sequential orderj they will be automatically placed that

way by the computer.

When you run the progaram, the program lines are performed in ascending
sequential order until:

(1) a branch instruction is performed (see "General Program Statements®)

(2) an arror occurs which causes the program to stop running (see “Error
Messages”)

(3) the user interrupts the running of the program with a BREAK command or by
using the BREAK key (or CLEAR)

(4) a STOP statement or END statement is performed

(5) the statement with the largest line nuwmber is performed

If you enter a program line with & line number less than 1 or greater than

32767, the message BAD LINE NUMBER will be displayed and the line will not be
entered into wemory.

~ Page 121 -

03e&6P TI-99/2 Book 4 BASIC Reference Guide

~NEW

»100 A=/ .7
»110 B=31.8
»120 PRINT R;B
+RUN

27.9 31.8
%% DONE %%
0 A=e

% BAD LINE NUMBER
»33000 C=4
* BAD LINE NUMBER

Page 172

(FINAL DRAFT)

O0432&F T1-99/2 Hook 4 BhblL Reterence vuide W LNRL. DERE L

Numeric Constants

Numeric constants must be either positive or negative real numbers. You may
enter numeric constants with any number of digits. Values are maintained
internally in seven radix-100 digits. This means that numbers will have 13 or
14 decimal digits depending on the value of the number.

Scientific Notation

Very large or very small numbers are easily handled using scientific
notation. A number in scientific notation is expressed as a base number

(mantissa) times ten raised to some power (exponent).

Exponent
Number=Mantissa x 10

To enter a number using scientific notation:
First, type the mantissa (be sure to type a minus sign first if it's negative).

Type the letter "E" (must be an upper—case E).

Type the power of 10 (if it is negative, type the minus sign before you type
the exponent).

The following are some examples of how numbers in scientific notation are
enteread.

Number Entered as
4
3.264 x 10 3.264E4
21
~98.77 x 10 -98.77E21 or ~9.8/7E22 .
-8
5.691 x 10 5.671E-5
-17 j
-2.847 % 10 "2-47E"‘17

Numeric constants are defined in the range of -9.9999999999999t12/ to -1E-128,

0y and 1E-128 to 9.9999999999999E127. -

Underflow—If an number is entered or computed whose value when rounded is
greater than -1E-1P28 and less than 1E-128, an underflow occurs. When an
underflow occurs, the computer replaces the value of the number with a zero

and the program continues running. No warning or error is given.

Overflow--1f a number is entered or computed whose value when reunded is
Sreater than 7.9999999999999E127 or less than -9.9999999999999E127, an
overflow occurs. When an overflow occurs, the constant is replaced by the
computer's limit, a warning is given with the message NUMBER TOO BIG, and the
program continues running. The computer's limit is ~9.9999999999999E127 ar

9 .9909999990900F 127 as appropriate. Note that "#%" is printed if the exponent
ie greater than 79.

Page 123

0Jdaé6P TI-99/2 Book 4 BRASIC Rererence Gulde

~PRINT 1.2
1.2

*PRINT -3
~3

“PRINT O
0

~PRINT 3.264t4
32640

~PRINT '-98.77E21
-9.877E422

»PRINT -9E-130
5 .

~PRINT 9E-142
0

#PRINT 978136
¥ WARNING:
NUMBER TOO BIG
? . FIFPIELH¥
»PRINT ~108E144

* WARNING:
NUMBER TOO BIG
""9'1 WW?E"'**

Page 124

(F TNRL

URAH T

Q326F TI1-99/22 Book 4 BARlC Reterence ﬂuide‘ (F LNAL. DKRE 1)

String Constants

A string constant is a string of characters (including letters, numbers,
spaces, symbols, etc.) enclosed in quotes. Spaces within string constants are
not ignored and are counted as characters in the string. Rll characters on
the keyboard that can be displayed may be used in a string constant. R string
constant is limited by the length of the input line (112 characters or four
lines on the screen).

When a PRINT or DISPLAY statement is perforwmed, the surrounding quote marks
are not displayed. If you wish to have words or phrases within.a_sicina
printed with surrounding gquote wmarksy simply enter a pair of adjacent quote
narks (double gquotes) on either side of the particular word or phrase when you
type it. Thus, three pairs of quotes are used in all.

Page 125

Q0326P TI-99/2 Book 4 BASIC Reterence Guide

FNEW

+100 PRINT “HI!"

»110 PRINT "THIS IS R STRING
CONSTANT . "

>120 PRINT "ALL CHARACTERS (4
~-%/ @,) MAY BE USED.®

> RUN
HI '
THIS IS A STRING CONSTANT.
ALL CHARACTERS (1-%/ @,) MAY

8E USED.

k% DONE %%

~NEW

»100 PRINT "TO PRINT ““QUOTE
MARKS"" YOU MUST USE DOUBLE
QUOTES WITHIN A STRING."

+110 PRINT

»120 PRINT *TOM SQID' "ﬂHI, MARY 1 anw

> RUN

(F1fAl. DRAFT)

TO PRINT "QUOTE MARKS" YOU MUST USE DOUBLE QUOTES.

TOM SAID, "HI, MARY'®

#¥% DONE %%

Page 26

voul AdDiE

In BASIC all variables are given a Name. Each variable name nay be from one
to fifteen characters in length but must begin with a letter, an at-sign (@),
4 left-bracket ([), a right-bracket (1), a back slash (), or an underline ¢
). The only characters allowed in a variable name are letters, numbers, the

at-sign (@), the underline (_)y and the dollar sign ($).

The dollar sign must be the last character 15 a string variable name, and this
15 the anly place in 4 variable name that it may be used. Variable names are

restricted to fifteen characters, including the dollar sign for string
variable names,

Array names follow the Same rules as simple variable names. (See the section
on Arrays far more information.) In a single program, the same name cannot be
used both as a simple variable and as an array name, nor can two arrays with
different dimensians have the same name. Far example, Z and Z(3) cannot hoth
be used as names in the same program, nor can X(3,4) and X(2,1,3). However,
there is no relationship between a numeric variable name and a string variable

name are the same except for tha dollar sign (X and X3 may both be used in the
Same preogram).

Numeric Variable Names

Valid: X, A9, AL PHA, BRSE _PAY, V(3}, T(X,3), TABLE (X, XX7Y/2)
Invalids X$, X/8, ay

String Variable Nanes

Valid: 8%, vZ2$, NAMES, Q5$(3,X)
Invalid: S$3, x9, 4z$

If you enter a variable name with more than fifteen tharacters, the message
BAD NAME is displayed and the line ies not entered into memory. Reserved words
are not allowed as variable names but may be used as part of 4 variable name.
For example, LIST is not allowed as a variable name but LISTS is accepted.

t "
At any instant while 4 Program 1s running, every variable has a single value,
When a program begins running, the value associated with each numeric variable
1s set to zero and the value associated with each string variable is set to
null (a string with a length of zero characters). When a Program is running,
values are assigned to variables when LET statements, READ gtatements,
FOR TO STEP statements, or INPUT statements are performed. The length of the
character string value associated with a string variable may vary from a
length of zero to a 'limit of 255 charactérs while a Program is running.

»110 ABCDEFGHIJKLMNOPQ=3
* BAD NAME

4+ "

T

Page 127

0326P TI-99/2 Book 4 BASIC Reference (uide (FINAL DRAFT)

Numeric Expressians

Numeric expressions are constructed from numeric variables, numeric constants,
and function references using arithmetic operatars (+-%/"). All functions
referenced in an expression must be either functions supplied in TI-99/72 BASIC
(see sections on Built-In Functions) or defined by a DEF statement. The two
kinds of arithmetic operators (prefix and infix) are discussed below.

The prefix arithmetic operators are plus (4) and minus (-} and are used to
indicate the sign (positive or negative) of constants and variables. The plus
sign indicates the number following the prefix operator (1) should be
multipliaed by 41, and the minus sign indicates the number following the prefix
operator (~) should be multiplied by ~1. Note that if no prefix operator is
present, the number is treated as if the prefix operator were plus. OSome
examples of prefix operators with constants and variables are:

10 -6 43
A -

The infix arithmetic operators are used for calculations and includel
addition (), subtraction (-), multiplication (%), division (/), and
exponentiation ("). An infix operator must appear between each numeric
constant and/or variable in a numeric expression. Note that multiplication
cannot be implied by simply placing variables side by side or by using
parentheses. You must use the multiplicaton operator (¥),

Infix and prefix operators may be entered side by side within a numeric'
expresﬁion. The operators are evaluated in the normal way.,

In evaluating numeric expressions, TI-99/2 BASIC uses the standard rules for
 mathematical hierarchy. These rules are outlined here.

1. All expressions within parentheses are evaluated first acgording to
the hierarchical rules. |)

2. Exponentiatiaon is performed next in order from left to right.

3. Prefix plus and minus are performed.

4, Multiplicatiaons and divisions are then completed.

5. Additions and subtractions are then completed.

" Note that 0°0 is defined to be 1 as in-ordinary mathematical usage.

In the evaluation of a mumeric expression if an underflow occurs, the value is
simply replaced by zero and the program continues running. If an overflow
occurs in the evaluation of a3 numeric expression, the value is replaced by the
computer's limit, a warning condition is indicated by the message "WARNING?

NUMBER TQOO BIG," and the program cnntinues runnNing.

when evaluation of a numeric expression results in division by zero, the value
is replaced by the computer's limit with the same sign as the numeratar, the
nessage WARNING: NUMBER TOO BIG is displayed, and the program continues
running. If the evaluation of the operation of exponentiation results in zero
being raised to a negative power, the value is replaced by the positive value
of the computer's limit, the message WARNING: NUMBER TOO BIG 1s displayed, and
the program continues running. If the evaluation of the operation of
exponentiation results in a negative number being raised to a non-integral
power, the message BAD VALUE is displayed, and the program stops running.

Page 178

0326P TI-%9/2 Book 4 BRSIL Reterence Guidé

»NEW

+100 A=46
+110 B=4
»120 C=20
+130 D=2
140 PRINT A*B/2
»180 PRINT C-D#*3+6
~RUN
12
2Q

%% DONE %%

»PRINT 34-1
2

»PRINT 2%-3
-4

+PRINT &/-3
-

~NEW

»100 R=e

+110 8=3

~120 C=4

»130 PRINT A*(B42)
»140 PRINT B A-4

»>150 PRINT -C7A3;(-C)"R
»160 PRINT 10-B¥*C/4

~RUN
10
5.
-16 16
8

%% DONE *%

*PRINT 070
1

Page 129

AR LKL UKRE

O ailbht B R A A Liiwion ¥ IR I 3 I T T ~ S 1O T T

~NEW

»100 PRINT 1E-200
110 PRINT 24+1E-139
»120 PRINT 1E171
»130 PRINT (1E60*1E74)/1E50
~RUN
0
24

%* WARNING:
NUMBER TOO BIG IN 120
?.9P99PE ¥

* WARNING
NUMBER TOO BIG IN 130
1.E478

%% DONE W

~NEW

#100 PRINT ~22/0
»110 PRINT 0" -2
»120 PRINT (-3)71.2
. #RUN

¥ WARNING:
"NUMBER TOO BIG IN 100
"'9 IW9E+**

* WARNINGS
NUMBER TOO BIG IN 110
? .99 HH

* BAD VALUE IN 120

Page 130

0326P 11-99/2 Book 4 BRSIC Reference Guide (F LNAL DRAK 1)

Relational Expressions

Relational expressions are normally used in the IF THEN ELSE statement but may
be usad anywhere numeric expressions are allowed. When you use relational
expressions within a numeric expression, a numeric value of -1 is given if the
relation is true and a numeric value of 0 is given if the relation is false.

Relational operations are performed from left to right before string
concatenation and after all arithmetic operations within the expression are
completed. To perform string concatenation before relational operations
and/or to perform relational operations before arithmetic operations, you must
use parentheses. Valid relational operators are:

Equal ta (=) Not equal to (<)
Less than (<) Less than or equal to (<=
Greater than (3) Greater than or equal to (>=)

An explanation of how string comparisons are performed to give you a true or
false result is discussed in the IF THEN ELSE explanation. Remember that the
result you obtain from the evaluation of a relational operator is always a
number. If you try to use the result as a string, you will get an error.

Page 131

Ve OF | A~ r 7/ ST IY TR [V

#NEW

»100 A=2<5
»110 B=3<=2
~120 PRINT A3B
+RUN

-1 0

%% DONE %

»NEW

»100 A$="HI*
»110 B$§=" THERE!'"
»120 PRINT (ALBS)="HI!'"
*RUN
0

*% DONE %

»120 PRINT (A$&BS)>"HI"
S RUN

-1

%% DONE ¥

120 PRINT ms}as:mqﬂ
>RUN
-4

% DONE %%

>NEW

»>100 A=2<4%*3

+110 B=R-0

»120 PRINT A8
+RUN

=10

%% DONE **

NP IR TR LA | W L PR o

Page 132

v oA diPt, Wi

P S

0326P TI-YY/2 Hook 4 BRS1C Reference tulde FAINAL DRAF 1)

String Expressions

String expressions are constructed from string variables, string constants,
and function references using the operation for concatenation (&). The
operation of caoncatenation allows you to combine strings together. All
functions referenced in a string expression must be either functions supplied
in TI-99/2 BRSIC {(see Built-In String Functions) ar defined by a DEF statement
and must have a string value. If evaluation of a string expression results in
a value which exceede the maximum string length of 255 characters, the string
1s truncated on the right, and the program continues running. No warning is

given.

Note that all characters included in a string expression are always displayed
on the screen exactly as vyou enter them.

~NEW

»100 Ag="HI"

»>110 B$="HELLD THERE!'"
»120 C$="HOW ARE YOU?"
#130 MSGE=ASASEGS (BS,6+7)
»140 PRINT MSGH&* “KC$
~RUN

HI THERE'! HOW ARE YOU<

%% DONE %%

Page 137

_0326P T1-99/¢2 Boak 4 BASIC Reference Guide

INDEX

R

Absolute value function
Accessorilies

Accessory outlet
Accuracy information
Addition

AID key

Alphabet keys

APPEND wmode
Arctangent function
Arithmetic expressions
Aritimetic operators
Arrays

RECII character codes
Assignment statement
Auto repeat

B

BACK kay
Backspace key
BRSIC

BEGIN key

Binary codes
Blank spaces
Branches, progran
BREAK command
BREAK key

Breakpoints
BYE command

C
CALL. CLEAR statement

CALL GCHAR statement
CALL HCHAR statement

-~ CALL KEY statement

CALL VCHAR statement

Care of console

Caret key

Cassette Interface Cable

Cassette Recorders
CLOSE statement

. INPUT statement

- Loading programs from
OPEN statement
PRINT statement
Saving programs on
With file processing

Page 136

(FTHAL. DRAFT)

0324P T1-99/2 Bouk 4 HASIC Retference Gujdé

Character codes
Character function
Character sets
Charactersy defining

CLEAR key
CLEAR subprogram
CLOSE statement
Command mode
Cartridges
Commands
Commands used as statements
Computer transfer

ON GOSUB

ON GOTO
Computer's limit
Concatenation
Constants

Numeri.c

String
CONTINUE command
Control keys
Conversion Table
Correcting errors
COSine functon
Cursaor

D

Data

DATA statement

DEFine statement

DELETE cowmand

DELete key

DELETE option

Difficulty, in case of

with cassette recorder

with LOAD routine
with SAVE routine
DIMension statement
- DISPLAY file-type
" DISPLAY statewment
DISPLAY-type dat
Division -
DOWN ARROW key

Page 137

(FINAL DRAET)

¥ L R W e ¢ A RO

E

EDIT command

Editing

End-of-file

End-of-file function

END statement

ENTER key

ERASE key

Error messages

Execution, program
Beginning
Continuing .
Interrupting
Terminating
Tracing

Exponent

Exponential function

Exponentiation

Expressions

F
File~life
Filename
File-number
File-organization
File processing
File—-type
FIXED record-type
FOR-NEXT loop
FOR TO STEP statement
Forwardspace key
Frequency
Function keys
Functions

Numeric

String
User—~def 1ned

GCHAR subprogram
G0SUB statement ,
GOTO statement
Greater than
Grid

H_

HCHAR subprogram
Hexadecimal

Hierarchy, mathematical

Page 138

0326P TI-99/2 Book 4 BRSIC Reference Luide

I

IF THEN ELSE statement
Infix operators

INPUT mode

Input-output statements
INPUT statement

INSert key

INTeger function
INTERNAL file—type
INTERNAL-type data

J

K

Keyboard
Keyboard overlay
KEY subprogran

L

Leaving TI-929/2 BASIC
LEFT ARROW key

LENgth function

lLess than

LET statement

Limits, computer

Line numbering, automatic
Line numbers

LIST command

Load data in TI-99/2 BASIC
LOGarithm function

Loop, iterative

H

MACHL. Subprogram

- Mantigsa

Math keys

Mathematical hierarchy
Multiplication

Page 13?

(FINRL. DRAFT)

U\JL:QP 1] i I:.}. ' BDﬂk 1

N

Name (variable)

NEW command

NEXT statement

Normal decimal form
Notational conventions
NUMBER command .
Number keys

Nuaber wode

Number representation
Numbenrs

Numeric constants
Numeric expressions
Numeric functions
Numeric operatars
Numeric variables

0

OLD comiand |

ON GOSUB statement

ON GOTO statement

ON/OFF switch

Upen mode |

OPEN statement

Operation keys

Operators
Arithmetic
Relational
String

QPTION BASE statement

Order of operations

Cutlets

OUTPUT wode

Overflow

Overlay

p

Parameter
Parentheses

PEEK Subprogram
Pending inputs
Pending prints
Peripheral outlet
PERMANENT file—life
Placement of console
POKE Subprogram
Position function
Power cord connection
Powers

Prefix aperators

ﬂHb]L K&l el'enng Ui._llﬂﬁ-

Page 140

vi Ll woiam b

0de6p TI-99/2 Book 4 BASIC Reference Guide (FINAL DRRFT).

Print separators
PRINT statement
PROC'D key
Program lines
Programs
Applications
Deleting from accessory device
Editing
Laading from accessory device
Running
Saving on accessory device
Paaudo-random numbers
Punctuation keys

Q
QUIT key
R

RaNDom number function
RANDOMIZE statement
RERD statement

Record data

. Record—-type

REDD key

Relational expressions
Relational operators
RELATIVE file-organization
RELATIVE files

REMark statement

Remote controls
RESEQUENCE command
Reserved words

RESTORE statement
RETURN statement

RIGHT ARROM key

RUN command

Rinning a BRSIC program

S

SAVE command

gave data in TI-99/¢2 BASIC
Scientific notation

-Seed

SEQUENTIAL file—organization
SHIFT function

SHIFT keys

Sign function

SiGNum function

SIN function

TR

Page 141

0326P TI-99/2 Book 4 BASIC Reference Guide (FINAL DRAFT)

SPACE BRR

Special function keys
StkiaRe root function
Statement used as command
STOP statement

String constants

String expressions
String functions
STRing-number function
String SEGment function
String variables
Strings

Subprogramns
Subroutines

Subscript

Subtragtion

T

TAB function

TANgent function

Television—consple connection
TI-99/2 BRSIC

TRACE command

Transformer and power cord connection
Trigonometric functions

U

UNBREAK command

Underf low

UNTRACE command

UP ARROW key

UPDATE Mode
User-DEFined functions

v

Value function =
VARIABLE record-type
Variables
YCHAR subprogram
Video-out
Volume

W-X-Y-Z

e)]

Page 112

